453 research outputs found

    The Cycle Structure of LFSR with Arbitrary Characteristic Polynomial over Finite Fields

    Full text link
    We determine the cycle structure of linear feedback shift register with arbitrary monic characteristic polynomial over any finite field. For each cycle, a method to find a state and a new way to represent the state are proposed.Comment: An extended abstract containing preliminary results was presented at SETA 201

    Euler tours in hypergraphs

    Get PDF
    We show that a quasirandom kk-uniform hypergraph GG has a tight Euler tour subject to the necessary condition that kk divides all vertex degrees. The case when GG is complete confirms a conjecture of Chung, Diaconis and Graham from 1989 on the existence of universal cycles for the kk-subsets of an nn-set.Comment: version accepted for publication in Combinatoric

    Task relevance modulates the cortical representation of feature conjunctions in the target template

    Get PDF
    AbstractLittle is known about the cortical regions involved in representing task-related content in preparation for visual task performance. Here we used representational similarity analysis (RSA) to investigate the BOLD response pattern similarity between task relevant and task irrelevant feature dimensions during conjunction viewing and target template maintenance prior to visual search. Subjects were cued to search for a spatial frequency (SF) or orientation of a Gabor grating and we measured BOLD signal during cue and delay periods before the onset of a search display. RSA of delay period activity revealed that widespread regions in frontal, posterior parietal, and occipitotemporal cortices showed general representational differences between task relevant and task irrelevant dimensions (e.g., orientation vs. SF). In contrast, RSA of cue period activity revealed sensory-related representational differences between cue images (regardless of task) at the occipital pole and additionally in the frontal pole. Our data show that task and sensory information are represented differently during viewing and during target template maintenance, and that task relevance modulates the representation of visual information across the cortex.</jats:p

    Shared neural codes for visual and semantic information about familiar faces in a common representational space

    Get PDF
    Processes evoked by seeing a personally familiar face encompass recognition of visual appearance and activation of social and person knowledge. Whereas visual appearance is the same for all viewers, social and person knowledge may be more idiosyncratic. Using between-subject multivariate decoding of hyperaligned functional magnetic resonance imaging data, we investigated whether representations of personally familiar faces in different parts of the distributed neural system for face perception are shared across individuals who know the same people. We found that the identities of both personally familiar and merely visually familiar faces were decoded accurately across brains in the core system for visual processing, but only the identities of personally familiar faces could be decoded across brains in the extended system for processing nonvisual information associated with faces. Our results show that personal interactions with the same individuals lead to shared neural representations of both the seen and unseen features that distinguish their identities

    Adaptive Encoding Speed in Working Memory

    Get PDF
    Humans can adapt when complex patterns unfold at a faster or slower pace, for instance when remembering a grocery list that is dictated at an increasingly fast rate. Integrating information over such timescales crucially depends on working memory, but although recent findings have shown that working memory capacity can be flexibly adapted, such adaptations have not yet been demonstrated for encoding speed. In a series of experiments, we found that young adults encoded at a faster rate when they were adapted to overall and recent stimulus duration. Interestingly, our participants were unable to use explicit cues to speed up encoding, even though these cues were objectively more informative than statistical information. Our findings suggest that adaptive tuning of encoding speed in working memory is a fundamental but largely implicit mechanism underlying our ability to keep up with the pace of our surroundings
    corecore