6,138 research outputs found

    On Classical de Sitter Vacua in String Theory

    Full text link
    We review the prospect of obtaining tree-level de Sitter (dS) vacua and slow-roll inflation models in string compactifications. Restricting ourselves to the closed string sector and assuming the absence of NSNS-sources, we classify the minimal classical ingredients that evade the simplest no-go theorems against dS vacua and inflation. Spaces with negative integrated curvature together with certain combinations of low-dimensional orientifold planes and low-rank RR-fluxes emerge as the most promising setups of this analysis. We focus on two well-controlled classes that lead to an effective 4D, N=1 supergravity description: Type IIA theory on group or coset manifolds with SU(3)-structure and O6-planes, as well as type IIB compactifications on SU(2)-structure manifolds with O5- and O7-planes. While fully stabilized AdS vacua are generically possible, a number of problems encountered in the search for dS vacua are discussed.Comment: 4 pages, proceedings of the 9th Hellenic School on Elementary Particle Physics and Gravity, Corfu 200

    Cascading gauge theory on dS_4 and String Theory Landscape

    Get PDF
    Placing anti-D3 branes at the tip of the conifold in Klebanov-Strassler geometry provides a generic way of constructing meta-stable de Sitter (dS) vacua in String Theory. A local geometry of such vacua exhibit gravitational solutions with a D3 charge measured at the tip opposite to the asymptotic charge. We discuss a restrictive set of such geometries, where anti-D3 branes are smeared at the tip. Such geometries represent holographic dual of cascading gauge theory in dS4 with or without chiral symmetry breaking. We find that in the phase with unbroken chiral symmetry the D3 charge at the tip is always positive. Furthermore, this charge is zero in the phase with spontaneously broken chiral symmetry. We show that the effective potential of the chirally symmetric phase is lower than that in the symmetry broken phase, i.e, there is no spontaneous chiral symmetry breaking for cascading gauge theory in dS4. The positivity of the D3 brane charge in smooth de-Sitter deformed conifold geometries with fluxes presents difficulties in uplifting AdS vacua to dS ones in String Theory via smeared anti-D3 branes.Comment: 47 pages, 6 figures. v2: published version. arXiv admin note: substantial text overlap with arXiv:1108.607

    de Sitter String Vacua from Kahler Uplifting

    Get PDF
    We present a new way to construct de Sitter vacua in type IIB flux compactifications, in which the interplay of the leading perturbative and non-perturbative effects stabilize all moduli in dS vacua at parametrically large volume. Here, the closed string fluxes fix the dilaton and the complex structure moduli while the universal leading perturbative quantum correction to the Kahler potential together with non-perturbative effects stabilize the volume Kahler modulus in a dS_4-vacuum. Since the quantum correction is known exactly and can be kept parametrically small, this construction leads to calculable and explicitly realized de Sitter vacua of string theory with spontaneously broken supersymmetry.Comment: 1+21 pages, 5 figures, LaTeX, uses JHEP3 class, v3: conforms with published versio

    de Sitter String Vacua from Supersymmetric D-terms

    Full text link
    We propose a new mechanism for obtaining de Sitter vacua in type IIB string theory compactified on (orientifolded) Calabi-Yau manifolds similar to those recently studied by Kachru, Kallosh, Linde and Trivedi (KKLT). dS vacuum appears in KKLT model after uplifting an AdS vacuum by adding an anti-D3-brane, which explicitly breaks supersymmetry. We accomplish the same goal by adding fluxes of gauge fields within the D7-branes, which induce a D-term potential in the effective 4D action. In this way we obtain dS space as a spontaneously broken vacuum from a purely supersymmetric 4D action. We argue that our approach can be directly extended to heterotic string vacua, with the dilaton potential obtained from a combination of gaugino condensation and the D-terms generated by anomalous U(1) gauge groups.Comment: 17 pages, 1 figur

    Analytic Classes of Metastable de Sitter Vacua

    Get PDF
    In this paper, we give a systematic procedure for building locally stable dS vacua in N=1\mathcal{N}=1 supergravity models motivated by string theory. We assume that one of the superfields has a Kahler potential of no-scale type and impose a hierarchy of supersymmetry breaking conditions. In the no-scale modulus direction the supersymmetry breaking is not small, in all other directions it is of order ϵ\epsilon. We establish the existence of an abundance of vacua for large regions in the parameter space spanned by ϵ\epsilon and the cosmological constant. These regions exist regardless of the details of the other moduli, provided the superpotential can be tuned such that the off-diagonal blocks of the mass matrix are parametrically small. We test and support this general dS landscape construction by explicit analytic solutions for the STU model. The Minkowski limits of these dS vacua either break supersymmetry or have flat directions in agreement with a no-go theorem that we prove, stating that a supersymmetric Minkowski vacuum without flat directions cannot be continuously deformed into a non-supersymmetric vacuum. We also describe a method for finding a broad class of stable supersymmetric Minkowski vacua that can be F-term uplifted to dS vacua and which have an easily controllable SUSY breaking scale.Comment: 30 page
    corecore