12,310 research outputs found
USP15 regulates dynamic protein-protein interactions of the spliceosome through deubiquitination of PRP31.
Post-translational modifications contribute to the spliceosome dynamics by facilitating the physical rearrangements of the spliceosome. Here, we report USP15, a deubiquitinating enzyme, as a regulator of protein-protein interactions for the spliceosome dynamics. We show that PRP31, a component of U4 snRNP, is modified with K63-linked ubiquitin chains by the PRP19 complex and deubiquitinated by USP15 and its substrate targeting factor SART3. USP15SART3 makes a complex with USP4 and this ternary complex serves as a platform to deubiquitinate PRP31 and PRP3. The ubiquitination and deubiquitination status of PRP31 regulates its interaction with the U5 snRNP component PRP8, which is required for the efficient splicing of chromosome segregation related genes, probably by stabilizing the U4/U6.U5 tri-snRNP complex. Collectively, our data suggest that USP15 plays a key role in the regulation of dynamic protein-protein interactions of the spliceosome
Complexity of the Ruminococcus flavefaciens FD-1 cellulosome reflects an expansion of family-related protein-protein interactions
This work was supported in part by the European Union, Area NMP.2013.1.1–2: Self-assembly of naturally occurring nanosystems: CellulosomePlus Project number: 604530, and by the EU Seventh Framework Programme (FP7 2007–2013) under the WallTraC project (Grant Agreement no 263916), and BioStruct-X (grant agreement no 283570). This paper reflects the author’s views only. The European Community is not liable for any use that may be made of the information contained herein. CMGAF is also supported by Fundação para a Ciência e a Tecnologia (Lisbon, Portugal) through grants PTDC/BIA-PRO/103980/2008 and EXPL/BIA-MIC/1176/2012. EAB is also funded by a grant (No. 1349/13) from the Israel Science Foundation (ISF), Jerusalem, Israel and by a grant (No. 2013284) from the U.S.-Israel Binational Science Foundation (BSF). E.A.B. is the incumbent of The Maynard I. and Elaine Wishner Chair of Bio-organic Chemistry.Peer reviewedPublisher PD
Polyoxometalate (POM)-layered double hydroxides (LDH) composite materials: design and catalytic applications
Layered double hydroxides (LDHs) are an important large class of two-dimensional (2D) anionic lamellar materials that possess flexible modular structure, facile exchangeability of inter-lamellar guest anions and uniform distribution of metal cations in the layer. Owing to the modular accessible gallery and unique inter-lamellar chemical environment, polyoxometalates (POMs) intercalated with LDHs has shown a vast array of physical properties with applications in environment, energy, catalysis, etc. Here we describe how polyoxometalate clusters can be used as building components for the construction of systems with important catalytic properties. This review article mainly focuses on the discussion of new synthetic approaches developed recently that allow the incorporation of the element of design in the construction of a fundamentally new class of materials with pre-defined functionalities in catalytic applications. Introducing the element of design and taking control over the finally observed functionality we demonstrate the unique opportunity for engineering materials with modular properties for specific catalytic applications
Controlled method of reducing electrophoretic mobility of macromolecules, particles, or cells
A method of reducing electrophoretic mobility of macromolecules, particles, cells, and other substances is provided which comprises interacting in a conventional electrophoretic separating procedure, the substances with a polymer-linked affinity compound comprised of a hydrophilic neutral polymer such as polyethylene glycol bound to a second component such as a hydrophobic compound, an immunocompound such as an antibody or antibody active fragment, or a ligand such as a hormone, drug, antigen, or a hapten. The reduction of electrophoretic mobility achieved is directly proportional to the concentration of the polymer-linked affinity compound employed, and such reduction can comprise up to 100 percent for particular particles and cells. The present invention is advantageous in that electrophoretic separation can now be achieved for substances whose native surface charge structure had prevented them from being separated by normal electrophoretic means. Depending on the affinity component utilized, separation can be achieved on the basis of the specific/irreversible, specific/reversible, semi-specific/reversible, relatively nonspecific/reversible, or relatively nonspecific/irreversible ligand-substance interactions
DNA-Mediated Electrochemistry
The base pair stack of DNA has been demonstrated as a medium for long-range charge transport chemistry both in solution and at DNA-modified surfaces. This chemistry is exquisitely sensitive to structural perturbations in the base pair stack as occur with lesions, single base mismatches, and protein binding. We have exploited this sensitivity for the development of reliable electrochemical assays based on DNA charge transport at self-assembled DNA monolayers. Here, we discuss the characteristic features, applications, and advantages of DNA-mediated electrochemistry
hSSB1 interacts directly with the MRN complex stimulating its recruitment to DNA double-strand breaks and its endo-nuclease activity
hSSB1 is a recently discovered single-stranded DNA binding protein that is essential for efficient repair of DNA double-strand breaks (DSBs) by the homologous recombination pathway. hSSB1 is required for the efficient recruitment of the MRN complex to sites of DSBs and for the efficient initiation of ATM dependent signalling. Here we explore the interplay between hSSB1 and MRN. We demonstrate that hSSB1 binds directly to NBS1, a component of the MRN complex, in a DNA damage independent manner. Consistent with the direct interaction, we observe that hSSB1 greatly stimulates the endo-nuclease activity of the MRN complex, a process that requires the C-terminal tail of hSSB1. Interestingly, analysis of two point mutations in NBS1, associated with Nijmegen breakage syndrome, revealed weaker binding to hSSB1, suggesting a possible disease mechanism.Publisher PDFPeer reviewe
Biogenesis of cytochrome c1
The biogenesis of cytochrome c1 involves a number of steps including: synthesis as a precursor with a bipartite signal sequence, transfer across the outer and inner mitochondrial membranes, removal of the first part of the presequence in the matrix, reexport to the outer surface of the inner membrane, covalent addition of heme, and removal of the remainder of the presequence. In this report we have focused on the steps of heme addition, catalyzed by cytochrome c1 heme lyase, and of proteolytic processing during cytochrome c1 import into mitochondria. Following translocation from the matrix side to the intermembrane-space side of the inner membrane, apocytochrome c1 forms a complex with cytochrome c1 heme lyase, and then holocytochrome c1 formation occurs. Holocytochrome c1 formation can also be observed in detergent-solubilized preparations of mitochondria, but only after apocytochrome c1 has first interacted with cytochrome c1 heme lyase to produce this complex. Heme linkage takes place on the intermembrane- space side of the inner mitochondrial membrane and is dependent on NADH plus a cytosolic cofactor that can be replaced by flavin nucleotides. NADH and FMN appear to be necessary for reduction of heme prior to its linkage to apocytochrome c1. The second proteolytic processing of cytochrome c1 does not take place unless the covalent linkage of heme to apocytochrome c1 precedes it. On the other hand, the cytochrome c1 heme lyase reaction itself does not require that processing of the cytochrome c1 precursor to intermediate size cytochrome c1 takes place first. In conclusion, cytochrome c1 heme lyase catalyzes an essential step in the import pathway of cytochrome c1, but it is not involved in the transmembrane movement of the precursor polypeptide. This is in contrast to the case for cytochrome c in which heme addition is coupled to its transport directly across the outer membrane into the intermembrane space
A DFT study of 5-fluorouracil adsorption on the pure and doped BN nanotubes
Abstract The electronic and adsorption properties of the pristine, Al-, Ga-, and Ge-doped BN nanotubes interacted with 5-fluorouracil molecule (5-FU) were theoretically investigated in the gas phase using the B3LYP density functional theory (DFT) calculations. It was found that the adsorption behavior of 5FU molecule on the pristine (8, 0) and (5, 5) BNNTs are electrostatic in nature. In contrast, the 5FU molecule (O-side) implies strong adsorption on the metal-doped BNNTs. Our results indicate that the Ga-doped presents high sensitivity and strong adsorption with the 5-FU molecule than the Al- and Ge-doped BNNTs. Therefore, it can be introduced as a carrier for drug delivery applications. © 2015 Elsevier Ltd
WWP2 ubiquitin ligase and its isoforms: New biological insight and promising disease targets
A number of recent papers on the WWP2 E3 ubiquitin ligase and two novel WWP2 isoforms have revealed important biological insight and disease-specific functions, and also impacted on our understanding of ubiquitin ligases in cell cycle regulation, apoptosis and differentiation. Gene knockout studies suggest a developmental role for WWP2 in chondrogenesis via mechanisms involving cartilage-specific transcription factors. Furthermore, WWP2 isoforms have been shown to selectively target oncogenic signaling pathways linked to both the pTEN tumour suppressor and the TGFß/Smad signaling pathway. Here, it is suggested that WWP2 isoforms have now emerged as central physiological regulators as well as promising new disease targets, and that the challenge ahead is to now develop highly selective WWP2 inhibitors with utility in cartilage disease such as osteoarthritis and as new anticancer strategies
- …
