11,827 research outputs found

    Modelling the corrosion behaviour of Al2CuMg coarse particles in copper-rich aluminium alloys

    Get PDF
    The corrosion behaviour of 2024 aluminium alloy in sulphate solutions was studied; attention was focused on the influence of coarse intermetallic Al2CuMg particles on the corrosion resistance of the alloy. Model alloys representative of the aluminium matrix and of Al2CuMg coarse intermetallics were synthesized by magnetron sputtering. Open-circuit potential measurements, current–potential curve plotting and galvanic coupling tests were performed in sulphate solutions with or without chlorides. Further explanations were deduced from the study of the passive films grown on model alloys in sulphate solutions. The results showed that model alloys are a powerful tool to study the corrosion behaviour of aluminium alloys

    The Influence of Alloy Composition and microstructure on the corrosion behaviour of Cu-Ni alloys in seawater

    Get PDF
    The aim of the study was to relate the general corrosion behaviour of CuNi 10-alloys in seawater with its iron content and microstructure. To that end the microstructure of four commercial alloys with various Fe-contents (1.20-1.78%) and there laboratory melted alloys with various Fe-contents (1.5-2.5%) were investigated in the as delivered state and after three different heat treatments. Samples of these alloys were exposed to flowing natural seawater. During exposure electrochemical measurements were performed. After exposure the weight loss was determined. Moreover, for a number of samples the corrosion products were analysed by means of electron microprobe analysis. Irrespective of the Fe-content, the presence of discontinuous precipitates in the laboratory melted alloys turned out to be detrimental with regard to general corrosion. To a less extent this also holds for alloys with high concentrations of continuous precipitates, as observed for iron contents of 2 and 2.5%. The precipitate free alloys as well as the ones containing low concentrations of continuous precipitates because of low Fe-concentrations (<1.5%Fe) do show a good corrosion behaviour. The corrosion behaviour of commercial CuNi 10 Fe in the as received condition was generally comparable with that of laboratory melted alloys with continuous precipitates. The corrosion rates of the former do not exceed those of the latter, which are very low for practical applications. Finally the corrosion behaviour of five laboratory melted CuNi5 alloys, containing up to 4% fe in solution, was investigated. It turned out that their reciprocal polarisation resistance in the steady state situation is lower than those for the CuNi 10 Fe alloys

    Simulating the galvanic coupling between S-Al2CuMg phase particles and the matrix of 2024 aerospace aluminium alloy

    Get PDF
    Study of the corrosion behaviour of a magnetron sputtered Al–Cu/Al–Cu–Mg model alloy couple in sulphate solutions has been undertaken to gain insight into the galvanic coupling between the matrix and SAl2CuMg particles in the 2024 aluminium alloy (AA2024). Polarisation curves and local electrochemical impedance spectroscopy measurements (LEIS) were performed on the individual alloys and on the model alloy couple. SEM enabled correlation of electrochemical phenomena to the observed damage. The corrosion behaviour of the sputtered alloys was shown to be representative of the AA2024, with the Al–Cu–Mg alloy part undergoing localised corrosion and the Al–Cu alloy part remaining passive

    Corrosion behaviour of brazing material AA4343

    Get PDF
    This paper is part of a work devoted to corrosion of brazed AA4343/AA3003/AA4343 materials on water side of automotive heater cores. The microstructure of the superficial resolidified AA4343 brazing material has been previously characterised [1] and [2]. It is composed of large (Al) grains separated by valleys containing multiphase deposits of (Al), Si and α-Al(Mn,Fe)Si. The present study focuses on its electrochemical behaviours in neutral water–ethylene glycol mixtures at different temperatures with and without chloride ions. Three types of behaviour are revealed: (i) passivation, (ii) defective passivation and (iii) pitting corrosion at the corrosion potential. The defective passivation is investigated in greater depth. The results show that Si needles do not participate in the corrosion progress whereas the α-Al(Mn,Fe)Si particles are preferential sites for corrosion attacks. α-Al(Mn,Fe)Si particle/matrix interactions are responsible of the defective passivation at valleys level where the α-Al(Mn,Fe)Si phase particles are mainly concentrated. Increasing the temperature enhances this reactivity whereas addition of ethylene glycol decreases it and favours a transition from defective passivation to passivation for ethylene glycol content higher than 55%

    Characterisation and understanding of the corrosion behaviour of the nugget in a 2050 aluminium alloy Friction Stir Welding joint

    Get PDF
    The corrosion behaviour of the nugget of a Friction Stir Welding joint employing a 2050 Al–Cu–Li alloy was investigated. The results showed that the nugget was susceptible to both intergranular and intragranular corrosion. Such corrosion behaviour was related to microstructural heterogeneities observed on a microscopic scale. Furthermore, heterogeneities in the corrosion behaviour of the nugget observed on a macroscopic scale were evidenced by a different corrosion behaviour from the top to the bottom of the nugget and by a localisation of the corrosion damage related to the ‘‘Onion ring structure’’. Critical microstructural parameters were identified to explain the results

    Effect of duplex treatments by plasma nitriding and triode sputtering on corrosion behaviour of 32CDV13 low alloy steel

    Get PDF
    This paper presents corrosion behaviour of duplex treated low alloy steel. Different kinds of samples were tested: non-treated, plasma nitrided, ZrBN-triode sputtered and ZrBN-duplex treated samples. The corrosion behaviour was evaluated by electrochemical techniques (corrosion potential and polarisation resistance evolutions versus immersion time, potentiodynamic curves). The corrosion tests were carried out in neutral aqueous saline solution (NaCl 30 g L−1), naturally aerated. The composition and the structure of layers were determined by EDS and XRD, respectively, while the morphology was observed by SEM. Experimental results showed that the corrosion current density Icorr increased with decreasing white layer thickness in plasma nitrided specimens. The nitrides Δ-Fe2 − 3N and Îłâ€Č-Fe4N present in the white layer are nobler than the substrate but may promote, by galvanic effect, a localised corrosion through open porosity. The duplex treated specimens (nitriding+ZrBN coating) present better corrosion protection and enable to overcome the drawbacks of both techniques, mainly the porosity of the deposited films

    Corrosion behaviour of an assembly between an AA1370 cable and a pure copper connector for car manufacturing applications

    Get PDF
    The corrosion behaviour of an assembly between an AA1370 cable and a pure copper connector for wiringharnesses was studied in neutral chloride and sulphate containing solution. Electrochemical impedancemeasurements showed that the corrosion behaviour of the cable was controlled by the ingress of the elec-trolyte inside cable cavities. Further, local impedance measurements were performed on two assemblycross-sections, i.e. with and without cavities in the aluminium cable. The results provided evidence forboth the galvanic coupling between aluminium and copper and the presence of cavities in the aluminiumcable as relevant explanations for the corrosion behaviour of the assembl

    Corrosion behaviour of Ti6Al4V ELI nanotubes for biomedical applications

    Full text link
    [EN] Surfaces engineering on titanium biomedical alloys aiming for improving bone regeneration, healing periods and increasing lifetime needs fora fundamental understanding of the electrochemical reactions occurring at the interface biomaterial/human fluid. There, electrochemical corrosion plays an important role in implant-tissue interaction. The aim of this study is to investigate the effect of different TiO2 surfaces and nanotubes on a Ti6Al4V ELI in their electrochemical corrosion resistance by different electrochemical techniques (open circuit potential, electrochemical impedance spectroscopy, and potentiodynamic polarization). The electrochemical behaviour of native, anodized, nanotubular and annealed nanotubular surfaces were investigated in 1 M NaCl solution. The nanotubular topography was obtained by electrochemical oxidation and the annealing treatment allowed at changing the crystalline structure of the oxides. The nanotube morphology, chemical composition, and structure was studied by Field Emission Scanning Electron Microscopy, Energy Dispersive Spectroscopy, X-ray diffraction and Transmission Electron Microscopy respectively. The results show that the anodic oxidation treatment creates a nanotubular topography that increases the surface area and changes the surface chemical composition. The electrochemical corrosion resistance decreased on the as-formed TiO2 tubes compared to the native oxide layer, due to higher surface area and amorphous crystal structure of the passive film. After annealing treatment, the fluoride ions are eliminated, and nanotubular resistance is enhanced through anatase stabilization.The authors wish to thank the Spanish Ministry of Economy and Competitiveness for the financial support of Research Project MAT2014-53764-C3-1-R, the Generalitat Valenciana for support through PROMETEO 2016/040, and the European Commission via FEDER funds to purchase equipment for research purposes and the Microscopy Service at the Valencia Polytechnic University. Thanks to Alba Dalmau and Javier Navarro Laboulais from Instituto de Seguridad Industrial y Medio Ambiente, Valencia Polytechnic University for the technical assistance with preparation of the electrochemical tests. Thanks to Irene Llorente and Jose Antonio Jimenez from CENIM/CSIC for the technical assistance with XRD characterization.Lario, J.; Viera, M.; Vicente-Escuder, Á.; Igual Muñoz, AN.; Amigó, V. (2019). Corrosion behaviour of Ti6Al4V ELI nanotubes for biomedical applications. Journal of Materials Research and Technology. 8(6):5548-5556. https://doi.org/10.1016/j.jmrt.2019.09.023S554855568

    Corrosion behaviour of mechanically polished AA7075-T6 aluminium alloy

    Get PDF
    In the present study, the effects of mechanical polishing on the microstructure and corrosion behaviour of AA7075 aluminium alloy are investigated. It was found that a nano-grained, near-surface deformed layer, up to 400 nm thickness, is developed due to significant surface shear stress during mechanically polishing. Within the near-surface deformed layer, the alloying elements have been redistributed and the microstructure of the alloy is modified; in particular, the normal MgZn2 particles for T6 are absent. However, segregation bands, approximately 10-nm thick, containing mainly zinc, are found at the grain boundaries within the near-surface deformed layer. The presence of such segregation bands promoted localised corrosion along the grain boundaries within the near-surface deformed layer due to microgalvanic action. During anodic polarisation of mechanically polished alloy in sodium chloride solution, two breakdown potentials were observed at −750 mV and −700 mV, respectively. The first breakdown potential is associated with an increased electrochemical activity of the near-surface deformed layer, and the second breakdown potential is associated with typical pitting of the bulk alloy

    Tribo-Corrosion behaviour of TiCxOy thin films in bio fluids

    Get PDF
    In recent years, the development of thin film systems for decorative applications has attracted significant attention in scientific research. These decorative coatings require, not only an attractive appearance for market applications, but also an ability to protect the surface underneath. Because of this, corrosion, wear and their combined effects (termed tribo-corrosion) are particularly important for lifetime prediction. The tribo-corrosion behaviour of a range of single layered titanium oxycarbide, TiCxOy,coatings, produced by DC reactive magnetron sputtering, has been studied and reported as a function of electrode potential (-0.9 V, -0.5 V, 0.0 V and +0.5 V) and applied load (3, 6 and 9 N). The study was conducted in a reciprocating sliding tribosystem (Plint TE 67/E) in a bio fluid (an artificial perspiration solution) at room temperature. During the wear tests, both the open-circuit potential and the corrosion current were monitored. The results showed that electrode potential and load have a significant influence on the total material loss. The variations in Rp (polarization resistance) and Cf(capacitance) before and after sliding, obtained by Electrochemical Impedance Spectroscopy (EIS) were evaluated in order to provide an understanding of the resistance of the film in such conditions. Tribo-corrosion maps were generated, based on the results, indicating the change in mechanisms of the tribological and corrosion parameters for such coatings
    • 

    corecore