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ABSTRACT

The corrosion behaviour of the nugget of a Friction Stir Welding joint employing a 2050 Al-Cu-Li alloy
was investigated. The results showed that the nugget was susceptible to both intergranular and intra-
granular corrosion. Such corrosion behaviour was related to microstructural heterogeneities observed
on a microscopic scale. Furthermore, heterogeneities in the corrosion behaviour of the nugget observed
on a macroscopic scale were evidenced by a different corrosion behaviour from the top to the bottom of
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1. Introduction

The reduction in the weight of aircraft metallic structures is a
current problem that the aeronautic industry has to address. At a
time where the role played by composite materials is becoming
more significant, the use of the Friction Stir Welding (FSW) process
in combination with the new generation aluminium-copper-lith-
ium alloy presents an alternative solution. The FSW process was
developed by The Welding Institute (TWI) and consists of using a
non-consumable, cylindrical, rotating tool (usually hardened steel)
that moves over the seam of two butted plates and stirs them to-
gether [1]. Both a strong plastic deformation of the material and
a strong increase in temperature were observed below the tool,
while gradients of deformation and temperature were recorded
perpendicularly to the joint, leading to gradients of microstructural
evolution that were also perpendicular to the joint. Therefore, a
typical FSW joint consists of the unaffected base material (BM), a
heat affected zone (HAZ), a thermo-mechanically affected zone
(TMAZ) and a dynamically recrystallised zone (nugget) as observed
in Fig. 1 for a FSW joint of an Al-Cu-Li alloy 2050 studied in a pre-
vious work [2]. This alloy, i.e., the base material, is a precipitation
hardening alloy. The main phase responsible for the hardening pro-
cess is T; (Al,CulLi), but some other precipitates should be found,
including ¢ (Al,Cu), T, (AlsLisCu) and Tg (Al;Cuyli), which can also

* Corresponding author. Tel.: +33 (0)5 34 32 34 07; fax: +33 (0)5 34 32 34 98.
E-mail address: christine.blanc@ensiacet.fr (C. Blanc).

the nugget and by a localisation of the corrosion damage related to the “Onion ring structure”. Critical
microstructural parameters were identified to explain the results.

contribute to strengthening the alloy but to a lesser extent than the
T, precipitates [3-5]. Other intermetallic particles can be encoun-
tered in these alloys, such as AlsZr particles, which prevent recrys-
tallisation phenomena, and AlgMn and Al,oCu,Mnj; particles, which
help control the grain size [6]. The zones generated during the FSW
process differ from one to another due to their grain size and mor-
phology and because of their differences in hardening precipitation
[2,7,8]. These microstructural differences lead to modification of
the corrosion behaviour. For example, each zone of the FSW joint
was characterised by its own corrosion potential value [2,9,10],
which led to galvanic coupling phenomena, as shown in a previous
work [2]. The results obtained in this previous work showed that
the nugget and the HAZ acted as sacrificial anodes when the
welded joint was not heat treated after welding [2]. Conversely, a
post-welding heat treatment inverted the corrosion potential val-
ues, shifting the potential of the BM toward more cathodic values
so that it acted as a sacrificial anode. Other authors corroborated
these results [11]. Nevertheless, the most interesting part of the
FSW welded joint is the centre, called the nugget. Previous studies
have revealed that the nugget has typical corrosion behaviour, clo-
sely linked to its particular microstructure that is generated by a
combined role of high strain rate and temperature. Jariyaboon
et al. [9] and Mahoney et al. [12] have measured the temperature
in the centre of the weld, i.e., the nugget, and the authors found
that it was approximately 481 °C and 500 °C, respectively. More-
over, Mahoney et al. [12] have also estimated that there was a gra-
dient of temperature in the thickness of the joint and,
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Fig. 1. Observations using an optical microscope of the FSW joint of AA 2050 alloy (Long Transverse-Short Transverse plane) submitted to a post-welding heat treatment
(PWHT) after etching using the Keller reagent: (a) global view, (b) base metal zone, (c) HAZ zone in the retreating side and (d) nugget [2].

consequently, in the nugget. As mentioned before, the centre of the
weld exhibits the most important deformation during the FSW
process. Jata and Semiatin [13] have estimated a strain rate of
10s~!, whereas Masaki et al. [14] assumed that it was approxi-
mately 2-3 s, It was assumed that the nugget was the place of
dynamic recrystallisation and led to the formation of small equi-
axed grains [2,9,13,14]. Some authors have noticed that the grain
size was not homogeneous in the nugget [15,16] and instead varied
along the thickness of the joint, with a maximum grain size in the
top of the nugget. This evolution could be attributed to the thermal
gradient between the top and bottom caused by the presence of
the shoulder. Fonda and Bingert [17] have also noticed the exis-
tence of a hardness variation between the top and bottom of the
nugget and related the result to both a gradient of temperature
and the reduction of time for T; precipitate nucleation in the bot-
tom of the nugget. Moreover, the FSW process was found to lead
to the formation of a typical microstructure called an “Onion Ring,”
which consists of bands of different textures, as observed in Fig. 1.
Kumar and Kailas [18] proposed a mechanism to explain such a
microstructure: a wrenching of the material in front of the tool
while the material was then put behind the probe. Following this
proposed mechanism, some authors found that the distance be-
tween two bands in the “Onion Ring” was equal to the distance
reached by the probe in one evolution [19,20]. Microstructural het-
erogeneities at a finer scale were also found to have detrimental ef-
fects on the corrosion behaviour of the nugget. Birbilis and
Buchbheit [21] have studied the corrosion behaviour of intermetal-
lic particles present in Al-Cu-Li alloys. They found that AlsZr, Als.
Mn, and ApoCu,Mns particles have a corrosion potential equal to
—0.752 V/SCE, —0.839 V/SCE and —0.550 V/SCE, respectively, in a
0.01 M NaCl solution whereas the matrix has a potential of
—0.679 V/SCE in the same solution. Thus, some micro-galvanic
coupling phenomena might appear to lead to the dissolution of
the particles or the matrix. In addition, the hardening precipitates
are very active particles, as mentioned by Li et al. [22], who evalu-
ated the electrochemical behaviour of T; and ¢ with respect to the
matrix and brought to light that the T, precipitates had a more
cathodic corrosion potential than the matrix in a 4% NaCl solution.
Li et al. [23] have also studied the evolution of the galvanic cou-
pling between T, or T, precipitates with the matrix.

Therefore, numerous studies showed that the nugget of an alu-
minium alloy (AA) 2050 FSW joint presents a very heterogeneous
microstructure, which suggests complex corrosion behaviour. In
a previous study [2], the corrosion behaviour of an AA 2050 FSW

joint has been studied, but the phenomena occurring in the nugget
have not been elucidated. The aim of the present work is to inves-
tigate in detail the corrosion behaviour of the nugget of an AA
2050-T34 FSW joint and to correlate the results obtained to the
microstructural characterisation to identify the critical microstruc-
tural parameters.

2. Experimental procedures
2.1. Material

The material studied in this work is a new generation alumin-
ium-copper-lithium alloy AA 2050 (Al base, 3.5% Cu, 1% Li -
weight per cent) provided by Constellium (Voreppe, France). It
consists of 15 mm thick-rolled plates of the T34 metallurgical
state, which corresponds to stretching before natural ageing. Two
plates were joined together by Friction Stir Welding (FSW) in the
EADS Innovation Works Laboratory. The welding process consists
of firmly bridling the two plates edge to edge. A rotating tool com-
pounded by a probe and shoulder is plugged at the junction of the
plates. Because of the friction phenomenon due to the rotation of
the tool, the material is softened and can be deformed. The whole
tool is then moved translationally along the frontier of the two
plates to create the welded joint. The direction of welding is paral-
lel to the rolling (longitudinal) direction of the plates. In this work,
plates of 15 mm thickness were friction stir welded with a rota-
tional speed of 400 rpm and a welding speed of 200 mm/min. A
threaded pin with three flats tool was used. After the welding pro-
cess, some of the joints are submitted to a heat treatment, where
the joint is maintained at 155 °C for 30 h. In the present work,
when the nugget is studied as welded, without any post-welding
heat treatment, the nugget is referred to as NHT (Not Heat Trea-
ted), whereas after the post-welding heat treatment, it is labelled
PWHT (Post-Welding Heat Treatment).

2.2. Corrosion tests

The corrosion behaviour of the nugget was studied using con-
ventional 3 day immersion tests and stationary electrochemical
techniques. For the electrochemical measurements, a three-elec-
trode electrochemical cell was used, including a platinum grid with
a large surface area as the auxiliary electrode and a saturated cal-
omel electrode (SCE) as the reference electrode. The FSW joint
samples were used as the working electrode and, depending on



the experiment, the surface exposed to the electrolyte corre-
sponded to one of the three characteristic planes of the welded
plates. Other experiments were also performed on nugget samples
removed from the FSW joints. Before all corrosion tests, the sample
surfaces were prepared with first an abrading procedure with 4000
grit SiC paper and then a polishing procedure using diamond paste
down to 1 pm and distilled water as the lubricant. All experiments
were performed in a 0.7 M NaCl solution prepared by dissolving
Normapur chemical salts in distilled water. Open circuit potential
(OCP) measurements were performed with a test duration of
approximately 2 h. The OCP values given in this work correspond
to average values calculated for the last 30 min of the test. Cur-
rent-potential curves were also plotted; upon immersion of the
sample in the electrolyte, the potential was immediately scanned
at a rate of 500 mV h™! from —1100 mV/SCE to —300 mV/SCE. As
a final test, a gel visualisation technique was used to study the glo-
bal electrochemical behaviour of the welded joint [24]. The gel was
obtained by mixing 3 g of Normapur agar agar powder in 100 mL of
0.7 M NacCl solution heated at 80 °C. Then, 15 mL of universal pH
indicator were added, and the solution was laid on a cooled surface
to obtain a 2-mm-thick film. Some parts of the film were cut and
put on the surface of the welded joint, which had been polished
as previously mentioned. The gel was maintained for 24 h on the
FSW joint surface.

2.3. Characterisation of the microstructure and observations of the
corrosion features

The microstructure of the nugget, in particular the grain size
and grain orientation, was first revealed using electrochemical
etching. The etching consisted of placing the material in a solution
composed of 96.5 mL of distilled water and 3.5 mL of tetrafluorob-
oric acid. During the immersion, a 20 V potential was applied for
40 s. The sample was immersed twice, with a 10 s emersion period
in air between the two immersion steps. Then, the samples were
observed using a PMG3 Olympus optical microscope. The micro-
structure of the nugget at a finer scale and, in particular, the pre-
cipitation state, was characterised using Transmission Electron
Microscopy (TEM) observations from a JEOL-JEM-2010. The sam-
ples were obtained by removing 300 pum thick slices from the nug-
get. The slices were ground down to approximately 100 pm thick
and a dimple was machined in the central region. Final electron
transparency was obtained by ion milling on a precision ion polish-
ing system (PIPS(tm), Gatan) using 5 KV Ar" ions. Characterisation
of the nugget microstructure was completed by Electron Back Scat-
tered Diffraction (EBSD) experiments performed on a JEOL 700F
SEM-FEG equipped with the HKL Premium EBSD system Nordlys
Fast. Before experiments, the samples were polished using differ-

ent SiC papers and polishing sheets. A Castaing electronic micro-
probe (EPMA) was used for chemical analyses of the matrix.
Experiments were performed on an SX50 CAMECA apparatus. Mi-
cro-hardness measurements were also performed to complete
the microstructural characterisation of the samples by using a
Zwick ZHU250 apparatus. Micro-hardness maps were obtained in
the Long Transverse - Short Transverse plane of the joints; approx-
imately 400 measurements using a Vickers tool were performed
for each joint with a 200 g load. For additional characterisation,
the PMG3 Olympus optical microscope was also used to observe
the samples after the corrosion tests. In this case, the samples were
removed from the electrolyte, rinsed with distilled water and then
air-dried.

3. Results: heterogeneities in the corrosion behaviour of NHT
and PWHT nuggets

Results obtained in a previous work showed that NHT and
PWHT joints presented the same microstructure at the optical
microscope scale with four different zones: base metal, HAZ, TMAZ
and nugget [2]. These zones were found to have a different corro-
sion behaviour from one to another. In the present work, attention
was paid to the corrosion behaviour of the nugget. Fig. 2 illustrates
the results obtained from the gel visualisation technique after 24 h
of exposure for the NHT (Fig. 2a and c) and PWHT (Fig. 2b and d)
welded joints. The experiments were performed on the whole
welded joint (long transverse - short transverse plane) but obser-
vations were focused on the nugget (Fig. 2c and d). Using this
experimental technique, the electrochemical behaviour of each
zone of the welded joint is given by the colour of the gel, due to
the presence of the universal indicator. By considering Eqgs. (1)
and (2), an anodic reaction induces the apparition of an acidic area,
characterised by a red/orange colour. On the contrary, Eq. (3)
shows that a cathodic behaviour induces an alkaline pH, character-
ised by a green colour.

Al — AP+ 3e- (1)
AP' 4+ H,0 < AIOH*" + H* (2)
0, + 2H,0 + 4e~ — 40H" 3)

For the NHT joint, the BM presented a cathodic behaviour,
whereas the HAZ and the nugget globally had an anodic behaviour.
The post-welding heat treatment inverted the electrochemical
behaviour so that, for the PWHT joints, the BM showed an anodic
behaviour and the HAZ/nugget globally revealed a cathodic behav-
iour. As previously shown [2], the post-welding heat treatment led
to a change in the electrochemical behaviour of the different zones

i
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Fig. 2. Observations of the FSW joint of AA 2050 alloy after exposure to a visualisation gel: (a) NHT joint, global view; (b) PWHT joint, global view; (c) zoom on the nugget of

the NHT joint; and (d) zoom on the nugget of the PWHT joint.



— =

20 pm

Fig. 3. Observations of the Longitudinal-Short Transverse plane for nugget samples after a 3 day immersion in a 0.7 M NaCl solution: (a) NHT nugget and (b) PWHT nugget.

of the welded joints. Nevertheless, special attention was paid here
to the electrochemical behaviour of the nugget. It was worth notic-
ing that the bottom of the nugget presented a more anodic behav-
iour than the top of the nugget for both NHT and PWHT welded
joints. Therefore, the results revealed a heterogeneous corrosion
behaviour of the nugget at a mesoscopic scale independent of the
metallurgical state of the nugget, i.e., for both NHT and PWHT nug-
gets. Moreover, even if the nugget globally presented a cathodic
behaviour for the PWHT joint, corrosion features were observed
in this nugget as well as in the NHT nugget, which globally had
an anodic behaviour. Further experiments were then performed
to study the corrosion damage for both nuggets. For all the follow-
ing experiments, tests were performed on the nugget samples re-
moved from the FSW joints to study the intrinsic corrosion
behaviour of the nugget without galvanic coupling with the other
zones of the welded joints. Similar tests were performed on the
whole welded joints, and the results obtained also led to the previ-
ous conclusions concerning the corrosion morphology and the dis-
tribution of the corrosion defects for both nuggets. First, 3 day
immersion tests in a 0.7 M NaCl solution were performed with
the longitudinal L — Short Transverse ST surfaces of NHT and PWHT
nuggets, respectively exposed to the electrolyte. Fig. 3 reveals that
the nuggets are intrinsically susceptible to corrosion as suggested
before by the results of the gel visualisation experiments. Indeed,
gel visualisation results showed that, for the NHT joint, the nugget
was globally the anodic site of the joint and obviously it was cor-
roded. But, for PWHT joints, even if the nugget was globally a
cathodic zone for the joint, corrosion features were observed in
the nugget. The results obtained now with immersion tests per-
formed on nugget samples removed from the joint before immer-
sion confirmed the intrinsic susceptibility of the nuggets to

corrosion. Fig. 3a shows that the NHT nugget is susceptible to
intergranular corrosion whereas the PWHT nugget (Fig. 3b) is sus-
ceptible to both intergranular and intragranular corrosion. More-
over, corrosion features were found to be homogeneously
distributed on the whole surface of the NHT nugget while, for
the PWHT nugget, corrosion features were located in parallel
bands. However, the corrosion was not highly extended to deter-
mine accurately the distribution of the corrosion damage. There-
fore, samples removed from the two nuggets (NHT and PWHT)
were submitted to a polarisation test in a 0.7 M NaCl solution.
For these experiments, the Longitudinal L — Short Transverse ST
surface was exposed to the electrolyte. These tests allowed to ob-
serve a more extended corrosion damage which made easier the
localisation of the corrosion defects. Observations of the surface
of the electrodes after the polarisation tests are summarised in
Fig. 4; again, observations are focused on the NHT nugget
(Fig. 4a) and PWHT nugget (Fig. 4b). First, the results were in good
agreement with observations performed after a 3 day immersion
test. The NHT nugget was homogeneously corroded (Fig. 4a) while,
for the PWHT nugget, the corrosion features were localised in par-
allel bands (Fig. 4b). The corroded bands were oriented at 45° and
90° with respect to the welding direction. Their thickness was
equal to 500 pm, the same as that of a non-corroded band. By mov-
ing from the beginning of a corroded band to the beginning of the
following corroded band, a distance of approximately 1 mm was
recorded. Therefore, for the PWHT nugget, another heterogeneity
in the corrosion behaviour at a finer scale than before (i.e., differ-
ences between the top and bottom of the nugget) was demon-
strated, with new corrosion damage mainly located in a few
specific bands. Moreover, observations of the corrosion features
confirmed that the two nuggets did not exhibit the same corrosion

Top of
The Nugget

ST| L

Bottom of
The Nugget

Fig. 4. Observations of the Longitudinal-Short Transverse plane for nugget samples after polarisation tests in a 0.7 M NaCl solution: (a and c) NHT nugget and (b and d) PWHT

nugget.



behaviour. The NHT nugget revealed a susceptibility to intergranu-
lar corrosion on its whole surface (Fig. 4c). On the contrary, for the
PWHT nugget, a susceptibility to both intergranular and intragran-
ular corrosion was revealed in the corroded bands (Fig. 4d).

4. Discussion

4.1. Understanding the susceptibility to intergranular and
intragranular corrosion of the nuggets

As brought to light by the experiments performed, the morphol-
ogy of the corrosion features observed in the corroded zones of the
nuggets, i.e., in the whole surface of the NHT nugget and in some
specific parallel bands for the PWHT nugget, depends on the met-
allurgical state of the nugget, with intergranular corrosion and
both intergranular and intragranular corrosion observed for the
NHT and PWHT nugget, respectively. TEM observations performed
for the NHT nugget (Fig. 5) showed very few intragranular T; pre-
cipitates, displaying instead a dense intergranular precipitation
where all the grain boundaries were decorated by fine precipitates
(Fig. 5a). EDX analyses were carried out perpendicularly to a grain
boundary (Fig. 5b) with the results reported in Table 1. The inter-
granular precipitate analysed was found to contain more copper
than the matrix around it, with an approximate chemical composi-
tion for the precipitate of 85 wt.% Al and 15 wt.% Cu, whereas the
matrix presented an approximate chemical composition of
97.5 wt.% Al and 2.5 wt.% Cu. The chemical analysis combined with
analyses of the crystallographic structure by using electronic dif-
fraction (Fig. 5c) suggested that the intergranular precipitates
could be attributed to the Al,CuyLi (Tg) type. Chen and Bhat [25]
also observed these precipitates in an Al-Li-Cu alloy, but at more
elevated temperatures. In the present study, additional analyses
performed on other intergranular precipitates led to the same re-
sults. However, due to the size of the precipitates, the chemical
composition is not accurate, and these intergranular precipitates
could also be attributed the ¢’ type. Then, the difficulty is to explain
the susceptibility of the NHT nugget to intergranular corrosion be-
cause the electrochemical behaviour of these two types of precip-
itates is different. The electrochemical behaviour of the Tp phase

Table 1
EDX analyses performed on the TEM sample of the NHT nugget. The numbers (from 1
to 8) correspond to the points located in Fig. 5.

1 2 3 4 5 6 7 8
at.% Al 85 85 97.8 97.5 97.6 96.7 97.5 97.5
at.% Cu 15 15 22 25 2.4 33 25 25

was not studied in the literature, though that of the T; phase,
which contains less copper, was studied by Li et al. [22]. T; precip-
itates were found to have a corrosion potential of —1.076 V/SCE in
a 4% NaCl solution, to be compared to a corrosion potential of
—0.855 V/SCE for the matrix o. If one assumed that the corrosion
potential of Ty precipitates is close to that of T; precipitates, some
micro-galvanic coupling phenomena could occur between the ma-
trix and the Ty precipitates which would lead to the dissolution of
Tp particles and could explain the susceptibility to intergranular
corrosion of the NHT nugget. Conversely, the ¢’ phase presents a
corrosion potential more anodic than that of the aluminium matrix
[22]. Moreover, the chemical analysis performed perpendicular to
the grain boundary did not allow for the determination of the pres-
ence of a depletion zone, or precipitate free zone (PFZ), close to the
grain boundary. However, by analogy with what is observed in
2XXX aluminium alloys, it could be assumed there is galvanic cou-
pling phenomena between the ¢’ precipitates, the PFZ and the ma-
trix, leading to the dissolution of the PFZ and, therefore, to a strong
susceptibility to intergranular corrosion. TEM observations were
also performed on the PWHT Nugget, with special attention paid
to the precipitates present in the zone susceptible to corrosion.
First, a nugget sample was removed from the PWHT joint, and half
of the sample was protected by a varnish. The nugget sample was
then polarised at a rate of 500mV h~! from —1100 mV/SCE to
—300 mV/SCE in a 0.7 M NaCl solution. After polarisation, the var-
nish was removed, and a TEM sample was removed in a non-cor-
roded zone in the prolongation of a corroded band. TEM
observations revealed a dense precipitation of both intergranular
and intragranular T; particles (Fig. 6). The formation of T; precipi-
tates is not surprising when considering the work of Gable et al. [5]
who have noticed that a heat treatment at 150 °C promotes the

[110]

Fig. 5. TEM observations of the NHT nugget of the AA 2050 FSW joint: (a) a global view of a grain boundary and (b) intergranular precipitates. The number indicates points for
EDX analyses. (c) Another intergranular precipitate and its corresponding diffraction pattern.
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Fig. 6. TEM observations of the PWHT nugget of the AA 2050 FSW joint in the bands
susceptible to be corroded: (a) intergranular precipitates and Precipitate Free Zone
and (b) similar observations in another zone.

Table 2
Sum of the metallurgical parameters concerned with the corrosion behaviour of NHT
and PWHT nuggets of the AA 2050 FSW joints.

Metallurgical Type of In the nugget  Effect known
parameters heterogeneity in the
literature
Grain size Mesoscopic scale  Yes in both [26,27]
(from the top to nuggets
the bottom)
Onion rings/texture Mesoscopic scale  Yes in both [19,20,28,29]
(period equal to nuggets
500 pm)
Chemical composition =~ Mesoscopic scale  No data [30,31]
Intergranular Microscopic scale  Yes in both [22,23]
precipitation nuggets
Intragranular Microscopic scale  Yes but

precipitation mainly in the

PWHT nugget

nucleation of T; precipitates at the expense of ¢ and Ty particles.
Moreover, in this study, a PFZ was observed all along the grain
boundaries (Fig. 6a). As mentioned before, the corrosion potential
of T; precipitates is more cathodic compared to that of the matrix
in a NaCl solution, which could induce some galvanic coupling phe-
nomena, leading to the dissolution of the T, precipitates present in
the grain boundaries and in the grains. Moreover, the galvanic cou-
pling phenomena had to be extended to the PFZ that contains less
copper than the matrix and T, precipitates. Therefore, both inter-
granular T, precipitates and the PFZ had to be considered as critical
metallurgical parameters to explain the PWHT nugget’s suscepti-
bility to intergranular corrosion. Concerning the nugget’s suscepti-
bility to intragranular corrosion, it seems relevant to refer to
intragranular T; precipitates that are homogeneously distributed
in the grain (except in the PFZ) as their dissolution due to micro-
galvanic coupling with the matrix could lead to grain dissolution.
Moreover, it could also be assumed that the formation in the grain
of numerous T; precipitates could lead to a decrease in the copper
content of the aluminium solid solution. Therefore, the matrix it-
self is less resistant to corrosion, which could contribute to the
PWHT nugget’s susceptibility to intragranular corrosion.
Therefore, the results showed that both intergranular and intra-
granular precipitates constitute critical metallurgical parameters

to explain the susceptibility to corrosion of the nugget for the AA
2050 FSW joints, whatever their metallurgical state. Some com-
ments about the distribution of these precipitates, with the pres-
ence of a PFZ, as well as about the chemical composition of the
aluminium solid solution were also given to explain the suscepti-
bility to both intergranular and intragranular corrosion of the
PWHT nugget. However, additional data are needed to explain
the heterogeneities observed in the corrosion behaviour of both
nuggets, i.e., heterogeneities such as a different corrosion behav-
iour between the top and bottom of the nugget for both nuggets
and the localisation of the corrosion features in some specific
bands for the PWHT nugget. Indeed, it seems relevant to assume
that other metallurgical factors could be helpful in explaining such
corrosion behaviour, e.g., the grain size, the texture or the chemical
composition of the matrix. Table 2 sumps up these metallurgical
parameters and indicates some published works in which the
influence of one of these metallurgical parameters on the corrosion
behaviour of a material was studied. Further experiments and
observations were therefore performed to identify the other criti-
cal metallurgical parameters for the corrosion behaviour of the
nuggets of AA 2050 FSW joints.

4.2. Heterogeneities in corrosion behaviour between the top and
bottom of the nugget

First, the discussion was focused on the heterogeneities ob-
served in the corrosion behaviour between the top and bottom of
the nugget (Fig. 2). Fig. 7 shows the OCP measurements performed
in the thickness of both the NHT and PWHT nuggets. OCP measure-
ments were performed in the L-LT plane beginning on the top of
the nugget to its bottom. A set of OCP measurements was obtained
by progressively polishing the nugget. After each polishing step
equal to 1.3 mm, an OCP measurement was performed. Fig. 7a
compares the grain size variation and the variation of the OCP val-
ues throughout the thickness of the NHT nugget. The OCP values
decrease through the thickness of the nugget, with an average va-
lue of —0.635 V/SCE near the top of the nugget and a minimum va-
lue of —0.665 V/SCE at the bottom of the nugget. This was not a
linear evolution, with an important drop in the OCP values ob-
served for the last 4-5 mm from the bottom surface. These mea-
surements were in good agreement with the results obtained
with the gel visualisation technique (Fig. 2). Indeed, the zone pre-
senting the most cathodic potential, i.e.,, the most anodic behav-
iour, was located in the last 4-5 mm, which corresponded to the
size of the orange spot in Fig. 2c. Therefore, the results showed that
even if the nugget globally acted as a sacrificial anode in the NHT
joint, local galvanic coupling phenomena occurred between the
top and bottom of the nugget. Comparison of both the OCP and
grain size variations in the thickness of the NHT nugget showed
that the OCP values decreased when the grain size decreased,
which suggested that the grain size could be helpful in explaining
the difference in electrochemical behaviour between the top and
bottom of the nugget. Similar results were obtained for the PWHT
nugget (Fig. 7b). The OCP values were found to decrease from
—0.700 V/SCE at few millimetres under the top surface to
—0.726 V/SCE when approaching the bottom surface. An important
drop in the OCP values was observed at 1-2 mm from the bottom
surface, which corresponded to the small orange spot observed
previously (Fig. 2d). For the PWHT nugget, a good correlation
was observed between both OCP and grain size variations suggest-
ing once more that the grain size could be a critical parameter for
explaining the corrosion behaviour of the nugget of the AA 2050
FSW joint. Numerous works in literature showed that it was not
unreasonable to expect fine grained alloys to exhibit different elec-
trochemical behaviour than coarse grained alloys. A relationship
between grain size and corrosion rate has yet been identified for
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Fig. 7. (a) Variation of the Open Circuit Potential measured in a 0.7 M NaCl solution and of the grain size from the top to the bottom for the NHT nugget; (b) similar results for
the PWHT nugget; (c) micro-hardness map obtained on a PWHT joint; and (d) comparison of the results obtained for NHT and PWHT nuggets.

steels [26] but also for pure aluminium or aluminium alloys
[27,32-34]. Zhao et al. proposed a generalised model for intergran-
ular corrosion growth in aluminium alloys and showed that the
intergranular corrosion rate was highly related to grain size and
shape [35]. The majority of the studies that consider grain size
and pure aluminium or aluminium alloys suggest that as grain size
decreases corrosion resistance improves [27,32,33]. For example,
Ralston et al. showed that decreasing grain size resulted in an
ennoblement of the corrosion potential [27]. However, fine grained
aluminium has also been found to be less corrosion resistant than
coarse grained aluminium [36]. The results obtained in the present
study seemed to show that a finer grained nugget exhibited a more
cathodic corrosion potential than a coarse grained nugget which
was in agreement with Mahmoud’s work [36] but contradictory
to the other works cited above. The susceptibility to corrosion ob-
served for finer grained alloys could be related to an increased
grain boundary density that will likely enhance overall surface
reactivity. However, as explained by Ralston et al. [27], determin-
ing a definitive ‘grain size—corrosion resistance’ relationship is
inherently complex as the evolution of the grain size always im-
parts other changes to the microstructure, for example the devel-
opment of texture, internal stresses and segregation of alloying
elements to grain boundaries. Authors showed a strong correlation
of intergranular attack around grains with higher grain stored en-
ergy [37] and others evidenced that grain boundary character dis-
tribution had a great effect on intergranular corrosion
susceptibility of aluminium [38]. In the present work, all the
parameters cited above could be considered as relevant parame-
ters. Among them, the distribution of alloying elements is a param-
eter worthy of additional comments. Geuser et al. performed Small
Angle X-ray Scattering analyses (SAXS) for a nugget from an AA
2050 FSW joint obtained by welding two rolled plates in a T34

metallurgical state then ageing at 155 °C [39]. The SAXS mapping
obtained for this nugget showed that there was a gradient of pre-
cipitation (T; and ¢’ precipitates) between the top and bottom of
the nugget with a larger density of T; precipitates in the top region
of the nugget. Similar results might be expected for the nuggets
studied in this work. Fig. 7c shows a micro-hardness map obtained
for the PWHT nugget; a similar map was obtained for the NHT nug-
get. A gradient of micro-hardness was observed from the top to the
bottom of the nugget, in agreement with the gradient of T; precip-
itate density. Taking into account the electrochemical behaviour of
the T, phase compared to that of the matrix, it could be assumed
that a greater density of T, precipitates in the top than in the bot-
tom of the NHT and PWHT nuggets should induce a more cathodic
potential, i.e. a more anodic behaviour, in the top than in the bot-
tom. Furthermore, a strong density of T, precipitates in the top of
the nuggets will lead to an impoverishment in copper for the solid
solution, which could contribute to the shift of the corrosion po-
tential in the top toward more cathodic values. Obviously, this
explanation is not in agreement with the corrosion behaviour ob-
served. Nevertheless, the role of both intergranular and intragran-
ular Ty precipitates should not be neglected. These precipitates
explain the susceptibility of the nugget to both intergranular and
intragranular corrosion, as shown before. Moreover, a comparison
of the OCP variations recorded for both nuggets (Fig. 7d) suggested
that the fine precipitates played a role in explaining the heteroge-
neities between the top and bottom of the nugget. Indeed, results
showed first that anywhere in the PWHT nugget, the OCP value
was more cathodic than in the NHT nugget, which supports the
observation of a strong density of intragranular T; precipitates in
the PWHT nugget. Moreover, the difference in OCP values between
the two nuggets was closely linked to the density of the T, precip-
itates because, although the two OCP curves had the same shape,
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Fig. 8. Observations using an optical microscope of the nugget of an AA 2050 FSW joint after electrochemical etching: (a) NHT nugget; (b) PWHT nugget; (c) EBSD analyses
performed on the PWHT nugget; (d and e) pole figures corresponding to bands of different textures.

they were not parallel. At 1.5 mm from the top, the difference in
OCP values between the two nuggets was equal to 0.07 V (absolute
value), whereas it was only approximately 0.06 V at 1 mm from the
bottom surface. Therefore, the difference in OCP values was maxi-
mal in the top when there were more T, precipitates. Of course, the
values 0.07 V and 0.06 V are very close, but one can assume that
the precipitation was helpful in explaining the heterogeneities in
the corrosion behaviour between the top and bottom of the nugget.
Therefore, the results obtained here evidenced a relationship be-
tween the grain size of the nugget and its electrochemical behav-
iour. A finer grained nugget was characterised by a more
cathodic corrosion potential. This could lead to assume that as
the grain size decreases, for this alloy, the corrosion potential de-
creases. Comparison of the corrosion potential measured for the
NHT nugget and that of the NHT base metal, characterised by a
coarser grained microstructure, could confirm this assumption as
the corrosion potential of the NHT base metal (—0.615 V/SCE)
was more anodic than that of the NHT nugget. However, opposing
results were obtained for the PWHT samples: the corrosion poten-
tial of the base metal, with coarser grains, was more cathodic than
that of the nugget. But, interpretation of the results was compli-
cated since the post welding heat treatment induced modifications
of the alloying elements distribution. Therefore, this work evi-
denced a relationship between the grain size and the electrochem-
ical behaviour of the nugget but it was not possible, with the data,
to conclude since other parameters could influence the results.

4.3. On the origins of the localisation of corrosion features in parallel
bands for PWHT nugget

For the PWHT nugget, as previously shown, the corrosion fea-
tures were located in parallel bands. This specific localisation of
the corrosion damage seems to be closely linked with a typical
microstructure observed in Friction Stir Welding joints that is
called “Onion Rings”. The onion rings microstructure is known to

result from the high strain rate and the elevated temperature in
the centre of the welded joint [19,20]. In the present study, an elec-
trochemical etching with tetrafluoroboric acid in the L-ST planes of
both nuggets allowed the microstructure of the nuggets to be re-
vealed and, thanks to the different colours observed, the differ-
ences in grain orientations to be more precisely established.
Fig. 8a and b shows that, at this scale, both nuggets presented
the same microstructure composed of two types of parallel bands
with seemingly different crystallographic orientations. The dis-
tance between two bands characterised by the same crystallo-
graphic orientation was equal to 500 pm, which corresponded to
the distance covered by the probe in one rotation. Inside each
500 pm width band, three sub-bands were observed (orange, ma-
genta and blue colours' in Fig. 8a and b). The sub-bands were cor-
related to the geometry of the welding tool; indeed, a threaded pin
with three flats tool was used. Additional EBSD analyses allowed this
strong texture to be confirmed. Fig. 8c shows an EBSD map obtained
in the L-ST plane of the middle of the PWHT nugget (from the top to
the bottom) in which two types of parallel bands were shown. The
corresponding pole figures (Fig. 8d and e) confirmed that each type
of band was characterised by a particular crystallographic orienta-
tion. The two types of bands seemed to be distinguished by the level
of disorientation of the (110) planes compared to the ST direction of
the welded plate. The same EBSD results were obtained for the NHT
nugget. This strong texture was strongly suggestive of the specific
localisation of the corrosion damage for the PWHT nugget. To con-
firm the link between the corrosion localisation and the texture ob-
served, a particular experimental procedure was used. The lower
part of the L-ST plane of a PWHT nugget sample removed from
the joint was covered with a varnish (visible in Fig. 9a). The sample
was then immersed in a 0.7 M NaCl solution and polarised from
—1100 mV/SCE to —300 mV/SCE so that corrosion damage developed

1 For interpretation of color in Fig. 8, the reader is referred to the web version of
this article.
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Fig. 9. Observations of the Longitudinal-Short Transverse plane for a PWHT nugget sample after polarisation tests in a 0.7 M NaCl solution: (a) before electrochemical etching
and (b) after electrochemical etching. The bottom of the sample was covered by a varnish during the corrosion test.

on the unprotected part of the sample (Fig. 9a). After the polarisation
test, the varnish was removed and an electrochemical etching with
tetrafluoroboric acid was performed. The L-ST plane of the half-cor-
roded sample after etching was observed in polarised light (Fig. 9b).
In Fig. 9b, the corrosion damage is observed on the top of the figure
while the bottom of the sample was protected by the varnish and so
did not display any corrosion damage. The electrochemical etching
allowed one to show that the bands where the corrosion damage
was located are directly superimposable with one type of bands
characterised by a specific crystallographic orientation. Therefore,
the results evidenced a correlation between the localisation of the
corrosion damage of the PWHT nugget and its texture.
Nevertheless, the texture observed cannot be the key factor
responsible for the localisation of the corrosion damage in the
PWHT nugget. Indeed, as shown in Fig. 8a and b, both NHT and
PWHT nuggets presented the same texture with two types of par-
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allel bands but only the PWHT nugget evidenced a localisation of
the corrosion damage. One can assume, as suggested in Table 2,
that the grain size could be a critical metallurgical parameter in
this case. Using EBSD analyses, the grain size in the two types of
parallel bands was measured, of course at the same level in the
nugget to take into account the results from Fig. 7. No significant
difference in grain size was observed from one band to the other.
It is also known that the chemical composition is a key parameter
in the corrosion behaviour of materials (Table 2). Concerning the
present study, assuming a difference of chemical composition from
one type of band to another seemed to not be relevant. Indeed, the
main advantage of the FSW process is that there is no transition in
a liquid state during the welding, so variations of chemical compo-
sition in the nugget are not expected. Nevertheless, to set aside this
factor, some chemicals measurements were performed in the L-ST
plane of the PWHT nugget using an EPMA system. This allowed
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Fig. 10. EPMA analyses performed for a PWHT nugget of AA 2050 FSW joint.



Fig. 11. TEM observations performed for the PWHT nugget of AA 2050 FSW joint: (a) slices removed in parallel bands susceptible to be corroded; (b) slices removed in
parallel bands that did not corrode in a NaCl solution; (c) zoom on a precipitate from the bands that did not corrode in a NaCl solution; (d) electron diffraction pattern for the
precipitate observed in (c).

Fig. 12. TEM observations for the NHT nugget of AA 2050 FSW joint submitted to a heat treatment at 430 °C for 15 h: (a) global view; (b) zoom on a precipitate; (c)
corresponding diffraction pattern.

quantitative measurements of the chemical composition in the dif- the L and ST directions. As the width of the smallest sub-band is
ferent types of parallel bands to be obtained. To bring to light a po- equal to 100 pm, this procedure is ensured to obtain an analysis
tential periodic variation of chemical composition due to these of the two types of parallel bands. The results are summarised

bands, measurements were performed every 50pum on a in Fig. 10. The black line symbolises a first analysis performed
2 um x 2 pm surface and at a distance at least equal to 1 mm along in the top of the nugget. Some fluctuations of the chemical



3 mm

Fig. 13. Observations of the NHT nugget of AA 2050 FSW joint submitted to a heat treatment at 430 °C for 15 h after polarisation tests in a 0.7 M NaCl solution.

Fig. 14. Observations of the NHT nugget of AA 2050 FSW joint after polarisation tests in a 0.7 M NaCl solution. Before corrosion tests, the nugget samples were submitted to a
heat treatment at 150 °C for (a) 0 h (NHT); (b) 5 h; (¢) 9 h; and (d) duration time longer than 9 h (PWHT). In figure (c), the red oval shape evidences the localisation of the
corrosion damage. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

composition were observed, but were determined to not be mean-
ingful. Similar measurements were performed along the black
dotted line and the grey line at distances of 2 mm and 1.5 mm,
respectively. Similarly, these measurements did not highlight any
periodic variations in chemical composition.

Based on the results, it was assumed that the localisation of the
corrosion features in some of the parallel bands for the PWHT nug-
get could be related to the precipitation state. One could think
about a difference in the density of fine precipitates from one type
of band to another or about the presence of different types of pre-
cipitates in one band versus another. For further understanding,
TEM slices were removed in the L-ST plane of the PWHT nugget.
Some were removed in a band susceptible to corrosion upon
immersion in a NaCl solution, and other slices were removed in a
band that did not corrode upon immersion. To be successful in this
TEM slice preparation, the two types of bands were located as pre-
viously explained. Fig. 11 evidenced that the morphology of the
precipitates present in the two slices are completely different. In

slice 1 (Fig. 11a), which corresponded to the bands susceptible to
corrosion, numerous T; precipitates were observed in the grains
and in the grain boundaries as previously shown in Fig. 6. In the
other slice (Fig. 11b and c), the precipitates observed both in grains
and grain boundaries revealed a cylindrical shape with a radius of
approximately 200 nm for 50 nm of thickness. Observations of the
precipitates were repeated many times by tilting the slice in the
TEM to observe the sample in various directions. All observations
confirmed that the precipitates present in the bands that did not
corrode in the PWHT nugget had a different morphology than
those observed in the other types of parallel bands. Electronic dif-
fraction analyses (Fig. 11d) showed that these precipitates could be
attributed a Ty (Al;CuylLi) type of precipitate. Therefore, it was rea-
sonable to explain the localisation of the corrosion damage in
PWHT nugget by referring to the precipitation state, i.e., to the fact
that the precipitates present in the two types of parallel bands
were different. To assess this hypothesis, a “modified“ PWHT nug-
get sample was synthesised by submitting a NHT nugget to a



modified post-welding heat treatment to promote the precipita-
tion of Ty precipitates in the whole nugget. The temperature and
the duration of this heat treatment were fixed according to the
time-temperature-precipitation diagram proposed by Chen and
Bhat [25] for the aluminium-copper-lithium alloy 2195, whose
chemical composition is close to that of the 2050 alloy. The heat
treatment consisted of maintaining the NHT nugget at 430 °C for
15 h. TEM observations performed on numerous slices removed
from this sample (Fig. 12) combined with electronic diffraction
studies confirmed that the large part of the precipitates present
in the “modified” PWHT nugget were Tp (Al;CuylLi) particles, even
though a few ¢ and 6" precipitates were observed. The “modified”
PWHT nugget was then submitted to a polarisation test, with the
L-ST plane exposed to a 0.7 M NaCl solution. Observations of the
sample after this corrosion test (Fig. 13) showed that the corrosion
damage was located on the whole surface of the nugget. Therefore,
the results showed that the 2050 alloy with Ty precipitates is sus-
ceptible to intergranular corrosion. As a consequence, it was rele-
vant to conclude that for the PWHT nugget, the bands that
contained Ty precipitates were also susceptible to intergranular
corrosion, as were the other types of parallel bands that contained
T, precipitates. However, it was assumed that the corrosion poten-
tial of the T; precipitates was more cathodic compared to the cor-
rosion potential of the Ty particles because T, precipitates contain
less copper. Of course, the lithium content of the precipitates prob-
ably influences their corrosion potential also. Therefore, the bands
containing T, precipitates were assumed to have a corrosion poten-
tial that was more cathodic than those containing Tp precipitates. A
galvanic coupling phenomenon could be considered between the
two types of bands; the bands that contained T; precipitates acted
as sacrificial anodes and corroded preferentially in the PWHT
nugget.

Therefore, the localisation of the corrosion damage in some par-
allel bands for the PWHT nugget was explained by the precipita-
tion state, which here appeared to be the critical metallurgical
parameter. What was most surprising was the presence of Ty pre-
cipitates in the grain. Indeed, Gable et al. [5] showed that a heat
treatment at 150 °C promoted the nucleation of T; precipitates,
while Chen and Bhat [25] observed Ty precipitates at higher tem-
peratures. The post-welding heat treatment for the PWHT nugget
corresponded only to an ageing at 155 °C. Therefore, a reasonable
hypothesis to explain the presence of Ty precipitates at such a
low temperature in some parallel bands was the influence of the
strain induced. Indeed, it was assumed that the strain induced by
the welding process was not the same in the two types of parallel
bands. Taking into account that the time-temperature—precipita-
tion diagram could be modified if the strain state of the material
was considered, for the PWHT nugget, a critical value for the strain
could be identified as the value for which Ty precipitates could be
formed during the ageing at 155 °C. It would then be easy to under-
stand that in some bands where the strain was higher than the lim-
it value, Ty precipitates could be observed, while the strain level
could be too low in other types of parallel bands for Ty precipitates
to be formed. Such a hypothesis meant that even if the precipita-
tion state was a critical metallurgical parameter to explain the
localisation of the corrosion damage in the PWHT nugget, the
“onion rings” morphology was also a key parameter. Indeed, the
two types of parallel bands were assumed to be characterised by
different strain levels and thus corresponded to a specific precipi-
tation state as shown previously. It was therefore logical that the
corroded bands in the PWHT nugget were superimposed with
one type of parallel band characterised by a crystallographic orien-
tation i.e., a strain level. Of course, if the precipitation state was the
critical metallurgical parameter, the duration of the post-welding
heat treatment was also a key factor. NHT nugget samples were
therefore submitted to other modified post-welding heat treat-

ment consisting in ageing at 155 °C for duration times equal to 5,
9, and 96 h; the duration time corresponding to the PWHT state
being 30 h. After these modified post-welding heat treatments,
the samples were submitted to a polarisation test in a 0.7 M NaCl
solution with the L-ST plane exposed to the electrolyte. Observa-
tions of the samples after the corrosion tests (Fig. 14) showed that
the corrosion damage started to be localised after 9 h of heat treat-
ment (Fig. 14c). For shorter duration times (Fig. 14a and b), the
nuggets exhibited intergranular corrosion on their whole surface.
On the contrary, for longer duration times, the surface exhibited
the beginnings of localisation that was emphasised when the dura-
tion of the heat treatment was increased. Therefore, the results
showed that for the strain level induced by the welding process
in the samples studied, and in particular in some parallel bands,
a 9-h ageing treatment at 155 °C was the minimal heat treatment
for T precipitates to be formed.

5. Conclusions

This work focused on the corrosion behaviour of the nugget in
an AA 2050 FSW joint. Two metallurgical states were considered,
i.e,, the as-welded joint called NHT and a joint submitted to a
post-welding heat treatment called PWHT. The results showed that
the post-welding heat treatment significantly modified the corro-
sion behaviour of the nugget. For the NHT nugget, a susceptibility
to intergranular corrosion was shown while, for the PWHT nugget,
both intergranular and intragranular corrosion features were ob-
served. Mechanisms were proposed to explain the susceptibility
to corrosion. For both nuggets, the precipitation state was identi-
fied as the critical metallurgical parameter. Moreover, results dis-
played heterogeneities in the corrosion behaviour of the nuggets.
First, for both nuggets, galvanic coupling phenomena were ob-
served between the top and bottom of the nuggets, which did
not present the same electrochemical behaviour; a relationship be-
tween the grain size and the electrochemical behaviour of the nug-
get was evidenced but it was not possible to conclude since
modifications of the grain size imparted other microstructural
changes. Then, for the PWHT nugget, another galvanic coupling
phenomenon was illustrated between parallel bands called “onion
rings”. The results showed that two types of bands could be iden-
tified by their crystallographic orientations and precipitation state
and thus by their electrochemical behaviour. Therefore, the results
allowed critical metallurgical parameters to be identified to ex-
plain the corrosion behaviour of both the NHT and PWHT nuggets.
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