3,509 research outputs found

    Inelastic tunnel diodes

    Get PDF
    Power is extracted from plasmons, photons, or other guided electromagnetic waves at infrared to midultraviolet frequencies by inelastic tunneling in metal-insulator-semiconductor-metal diodes. Inelastic tunneling produces power by absorbing plasmons to pump electrons to higher potential. Specifically, an electron from a semiconductor layer absorbs a plasmon and simultaneously tunnels across an insulator into metal layer which is at higher potential. The diode voltage determines the fraction of energy extracted from the plasmons; any excess is lost to heat

    Mod silver metallization: Screen printing and ink-jet printing

    Get PDF
    Basic material efforts have proven to be very successful. Adherent and conductive films were achieved. A silver neodecanoate/bismuth 2-ethylhexanoate mixture has given the best results in both single and double layer applications. Another effort is continuing to examine the feasibility of applying metallo-organic deposition films by use of an ink jet printer. Direct line writing would result in a saving of process time and materials. So far, some well defined lines have been printed

    Enhanced Tunnelling in a Hybrid of Single-Walled Carbon Nanotubes and Graphene

    Full text link
    Transparent and conductive films (TCFs) are of great technological importance. The high transmittance, electrical conductivity and mechanical strength make single-walled carbon nanotubes (SWCNTs) a good candidate for their raw material. Despite the ballistic transport in individual SWCNTs, however, the electrical conductivity of their networks is limited by low efficiency of charge tunneling between the tube elements. Here, we demonstrate that the nanotube network sheet resistance at high optical transmittance is decreased by more than 50% when fabricated on graphene and thus provides a comparable improvement as widely adopted gold chloride (AuCl3\mathrm{AuCl_3}) doping. However, while Raman spectroscopy reveals substantial changes in spectral features of doped nanotubes, no similar effect is observed in presence of graphene. Instead, temperature dependent transport measurements indicate that graphene substrate reduces the tunneling barrier heights while its parallel conductivity contribution is almost negligible. Finally, we show that combining the graphene substrate and AuCl3\mathrm{AuCl_3} doping, the SWCNT thin films can exhibit sheet resistance as low as 36 Ω\Omega/sq. at 90% transmittance.Comment: 21 pages, 6 figure

    Soft capacitor fibers using conductive polymers for electronic textiles

    Full text link
    A novel, highly flexible, conductive polymer-based fiber with high electric capacitance is reported. In its crossection the fiber features a periodic sequence of hundreds of conductive and isolating plastic layers positioned around metallic electrodes. The fiber is fabricated using fiber drawing method, where a multi-material macroscopic preform is drawn into a sub-millimeter capacitor fiber in a single fabrication step. Several kilometres of fibers can be obtained from a single preform with fiber diameters ranging between 500um -1000um. A typical measured capacitance of our fibers is 60-100 nF/m and it is independent of the fiber diameter. For comparison, a coaxial cable of the comparable dimensions would have only ~0.06nF/m capacitance. Analysis of the fiber frequency response shows that in its simplest interrogation mode the capacitor fiber has a transverse resistance of 5 kOhm/L, which is inversely proportional to the fiber length L and is independent of the fiber diameter. Softness of the fiber materials, absence of liquid electrolyte in the fiber structure, ease of scalability to large production volumes, and high capacitance of our fibers make them interesting for various smart textile applications ranging from distributed sensing to energy storage

    Electrorepulsive actuator

    Get PDF
    The invention is a linear actuator that operates under the principle that like charges repel and opposite charges attract. The linear actuator consists of first and second pairs of spaced opposed conductors where one member of each pair of conductors is attached to a fixed member, and where the other member of each pair of conductors is attached to a movable member such as an elongated rod. The two pairs of spaced conductors may be provided in the form of two spacedly interwound helical vanes where the conductors are located on the opposite sides of the two helical vanes. One helical vane extends inwardly from a housing and the other helical vane extends outwardly from an elongated rod. The elongated rod may be caused to move linearly with respect to the housing by applying appropriate charges of like or opposite polarity to the electrical conductors on the helical vanes

    Conductive Particles in Anisotropic Conductive Films

    Get PDF
    Anisotropic Conductive Films (ACFs) are the major products used for fine-pitch interconnection technology in electronic packaging because of their low incidence in electrical interconnection issues such as high contact resistance and open/short-circuit failure. ACF are conductive adhesives composed of a suitable binder and electrically Conductive Particles (CP). These CP can be selected from a variety of materials to meet specific applications or requirements. In this Mini Review we describe the different types of conductive particles that can be used in ACF, the advantages and disadvantages of each type, as well as other relevant issues such as particle size, concentration, and capture rate. This work could serve as a guide for any group that is interested in research on ACFs.Fil: Trupp, Federico Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física. Laboratorio de Polímeros y Materiales Compuestos; ArgentinaFil: Cibils, Roberto Manuel. Invap S. E.; ArgentinaFil: Goyanes, Silvia Nair. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentin

    Process development

    Get PDF
    An overview is given of seven process development activities which were presented at this session. Pulsed excimer laser processing of photovoltaic cells was presented. A different pulsed excimer laser annealing was described using a 50 w laser. Diffusion barrier research focused on lowering the chemical reactivity of amorphous thin film on silicon. In another effort adherent and conductive films were successfully achieved. Other efforts were aimed at achieving a simultaneous front and back junction. Microwave enhanced plasma deposition experiments were performed. An updated version of the Solar Array Manufacturing Industry Costing Standards (SAMICS) was presented, along with a life cycle cost analysis of high efficiency cells. The last presentation was on the evaluation of the ethyl vinyl acetate encapsulating system
    corecore