278,433 research outputs found
Understanding Student Computational Thinking with Computational Modeling
Recently, the National Research Council's framework for next generation
science standards highlighted "computational thinking" as one of its
"fundamental practices". 9th Grade students taking a physics course that
employed the Modeling Instruction curriculum were taught to construct
computational models of physical systems. Student computational thinking was
assessed using a proctored programming assignment, written essay, and a series
of think-aloud interviews, where the students produced and discussed a
computational model of a baseball in motion via a high-level programming
environment (VPython). Roughly a third of the students in the study were
successful in completing the programming assignment. Student success on this
assessment was tied to how students synthesized their knowledge of physics and
computation. On the essay and interview assessments, students displayed unique
views of the relationship between force and motion; those who spoke of this
relationship in causal (rather than observational) terms tended to have more
success in the programming exercise.Comment: preprint to submit to PERC proceedings 201
Teaching programming with computational and informational thinking
Computers are the dominant technology of the early 21st century: pretty well all aspects of economic, social and personal life are now unthinkable without them. In turn, computer hardware is controlled by software, that is, codes written in programming languages. Programming, the construction of software, is thus a fundamental activity, in which millions of people are engaged worldwide, and the teaching of programming is long established in international secondary and higher education. Yet, going on 70 years after the first computers were built, there is no well-established pedagogy for teaching programming.
There has certainly been no shortage of approaches. However, these have often been driven by fashion, an enthusiastic amateurism or a wish to follow best industrial practice, which, while appropriate for mature professionals, is poorly suited to novice programmers. Much of the difficulty lies in the very close relationship between problem solving and programming. Once a problem is well characterised it is relatively straightforward to realise a solution in software. However, teaching problem solving is, if anything, less well understood than teaching programming.
Problem solving seems to be a creative, holistic, dialectical, multi-dimensional, iterative process. While there are well established techniques for analysing problems, arbitrary problems cannot be solved by rote, by mechanically applying techniques in some prescribed linear order. Furthermore, historically, approaches to teaching programming have failed to account for this complexity in problem solving, focusing strongly on programming itself and, if at all, only partially and superficially exploring problem solving.
Recently, an integrated approach to problem solving and programming called Computational Thinking (CT) (Wing, 2006) has gained considerable currency. CT has the enormous advantage over prior approaches of strongly emphasising problem solving and of making explicit core techniques. Nonetheless, there is still a tendency to view CT as prescriptive rather than creative, engendering scholastic arguments about the nature and status of CT techniques. Programming at heart is concerned with processing information but many accounts of CT emphasise processing over information rather than seeing then as intimately related.
In this paper, while acknowledging and building on the strengths of CT, I argue that understanding the form and structure of information should be primary in any pedagogy of programming
Research questions and approaches for computational thinking curricula design
Teaching computational thinking (CT) is argued to be necessary but also admitted to be a very challenging task. The reasons for this, are: i) no general agreement on what computational thinking is; ii) no clear idea nor evidential support on how to teach CT in an effective way. Hence, there is a need to develop a common approach and a shared understanding of the scope of computational thinking and of effective means of teaching CT. Thus, the consequent ambition is to utilize the preliminary and further research outcomes on CT for the education of the prospective teachers of secondary, further and higher/adult education curricula
- …
