28,158 research outputs found

    Introduction to clarithmetic II

    Full text link
    The earlier paper "Introduction to clarithmetic I" constructed an axiomatic system of arithmetic based on computability logic (see http://www.cis.upenn.edu/~giorgi/cl.html), and proved its soundness and extensional completeness with respect to polynomial time computability. The present paper elaborates three additional sound and complete systems in the same style and sense: one for polynomial space computability, one for elementary recursive time (and/or space) computability, and one for primitive recursive time (and/or space) computability

    Against Hayek

    Get PDF
    Presents a critical analysis of Hayek in the light of modern computability and economic computability theory.Hayek, Computability, Socialism

    (HO)RPO Revisited

    Get PDF
    The notion of computability closure has been introduced for proving the termination of the combination of higher-order rewriting and beta-reduction. It is also used for strengthening the higher-order recursive path ordering. In the present paper, we study in more details the relations between the computability closure and the (higher-order) recursive path ordering. We show that the first-order recursive path ordering is equal to an ordering naturally defined from the computability closure. In the higher-order case, we get an ordering containing the higher-order recursive path ordering whose well-foundedness relies on the correctness of the computability closure. This provides a simple way to extend the higher-order recursive path ordering to richer type systems

    On the information carried by programs about the objects they compute

    Get PDF
    In computability theory and computable analysis, finite programs can compute infinite objects. Presenting a computable object via any program for it, provides at least as much information as presenting the object itself, written on an infinite tape. What additional information do programs provide? We characterize this additional information to be any upper bound on the Kolmogorov complexity of the object. Hence we identify the exact relationship between Markov-computability and Type-2-computability. We then use this relationship to obtain several results characterizing the computational and topological structure of Markov-semidecidable sets

    Propositional computability logic I

    Full text link
    In the same sense as classical logic is a formal theory of truth, the recently initiated approach called computability logic is a formal theory of computability. It understands (interactive) computational problems as games played by a machine against the environment, their computability as existence of a machine that always wins the game, logical operators as operations on computational problems, and validity of a logical formula as being a scheme of "always computable" problems. The present contribution gives a detailed exposition of a soundness and completeness proof for an axiomatization of one of the most basic fragments of computability logic. The logical vocabulary of this fragment contains operators for the so called parallel and choice operations, and its atoms represent elementary problems, i.e. predicates in the standard sense. This article is self-contained as it explains all relevant concepts. While not technically necessary, however, familiarity with the foundational paper "Introduction to computability logic" [Annals of Pure and Applied Logic 123 (2003), pp.1-99] would greatly help the reader in understanding the philosophy, underlying motivations, potential and utility of computability logic, -- the context that determines the value of the present results. Online introduction to the subject is available at http://www.cis.upenn.edu/~giorgi/cl.html and http://www.csc.villanova.edu/~japaridz/CL/gsoll.html .Comment: To appear in ACM Transactions on Computational Logi

    Algorithmic Randomness for Infinite Time Register Machines

    Full text link
    A concept of randomness for infinite time register machines (ITRMs), resembling Martin-L\"of-randomness, is defined and studied. In particular, we show that for this notion of randomness, computability from mutually random reals implies computability and that an analogue of van Lambalgen's theorem holds

    Asymptotic density, immunity, and randomness

    Full text link
    In 2012, inspired by developments in group theory and complexity, Jockusch and Schupp introduced generic computability, capturing the idea that an algorithm might work correctly except for a vanishing fraction of cases. However, we observe that their definition of a negligible set is not computably invariant (and thus not well-defined on the 1-degrees), resulting in some failures of intuition and a break with standard expectations in computability theory. To strengthen their approach, we introduce a new notion of intrinsic asymptotic density, with rich relations to both randomness and classical computability theory. We then apply these ideas to propose alternative foundations for further development in (intrinsic) generic computability. Toward these goals, we classify intrinsic density 0 as a new immunity property, specifying its position in the standard hierarchy from immune to cohesive for both general and Δ20\Delta^0_2 sets, and identify intrinsic density 12\frac{1}{2} as the stochasticity corresponding to permutation randomness. We also prove that Rice's Theorem extends to all intrinsic variations of generic computability, demonstrating in particular that no such notion considers \emptyset' to be "computable".Comment: Revised preprint - accepted for publication in Computabilit
    corecore