28,158 research outputs found
Introduction to clarithmetic II
The earlier paper "Introduction to clarithmetic I" constructed an axiomatic
system of arithmetic based on computability logic (see
http://www.cis.upenn.edu/~giorgi/cl.html), and proved its soundness and
extensional completeness with respect to polynomial time computability. The
present paper elaborates three additional sound and complete systems in the
same style and sense: one for polynomial space computability, one for
elementary recursive time (and/or space) computability, and one for primitive
recursive time (and/or space) computability
Against Hayek
Presents a critical analysis of Hayek in the light of modern computability and economic computability theory.Hayek, Computability, Socialism
(HO)RPO Revisited
The notion of computability closure has been introduced for proving the
termination of the combination of higher-order rewriting and beta-reduction. It
is also used for strengthening the higher-order recursive path ordering. In the
present paper, we study in more details the relations between the computability
closure and the (higher-order) recursive path ordering. We show that the
first-order recursive path ordering is equal to an ordering naturally defined
from the computability closure. In the higher-order case, we get an ordering
containing the higher-order recursive path ordering whose well-foundedness
relies on the correctness of the computability closure. This provides a simple
way to extend the higher-order recursive path ordering to richer type systems
On the information carried by programs about the objects they compute
In computability theory and computable analysis, finite programs can compute
infinite objects. Presenting a computable object via any program for it,
provides at least as much information as presenting the object itself, written
on an infinite tape. What additional information do programs provide? We
characterize this additional information to be any upper bound on the
Kolmogorov complexity of the object. Hence we identify the exact relationship
between Markov-computability and Type-2-computability. We then use this
relationship to obtain several results characterizing the computational and
topological structure of Markov-semidecidable sets
Propositional computability logic I
In the same sense as classical logic is a formal theory of truth, the
recently initiated approach called computability logic is a formal theory of
computability. It understands (interactive) computational problems as games
played by a machine against the environment, their computability as existence
of a machine that always wins the game, logical operators as operations on
computational problems, and validity of a logical formula as being a scheme of
"always computable" problems. The present contribution gives a detailed
exposition of a soundness and completeness proof for an axiomatization of one
of the most basic fragments of computability logic. The logical vocabulary of
this fragment contains operators for the so called parallel and choice
operations, and its atoms represent elementary problems, i.e. predicates in the
standard sense. This article is self-contained as it explains all relevant
concepts. While not technically necessary, however, familiarity with the
foundational paper "Introduction to computability logic" [Annals of Pure and
Applied Logic 123 (2003), pp.1-99] would greatly help the reader in
understanding the philosophy, underlying motivations, potential and utility of
computability logic, -- the context that determines the value of the present
results. Online introduction to the subject is available at
http://www.cis.upenn.edu/~giorgi/cl.html and
http://www.csc.villanova.edu/~japaridz/CL/gsoll.html .Comment: To appear in ACM Transactions on Computational Logi
Algorithmic Randomness for Infinite Time Register Machines
A concept of randomness for infinite time register machines (ITRMs),
resembling Martin-L\"of-randomness, is defined and studied. In particular, we
show that for this notion of randomness, computability from mutually random
reals implies computability and that an analogue of van Lambalgen's theorem
holds
Asymptotic density, immunity, and randomness
In 2012, inspired by developments in group theory and complexity, Jockusch
and Schupp introduced generic computability, capturing the idea that an
algorithm might work correctly except for a vanishing fraction of cases.
However, we observe that their definition of a negligible set is not computably
invariant (and thus not well-defined on the 1-degrees), resulting in some
failures of intuition and a break with standard expectations in computability
theory.
To strengthen their approach, we introduce a new notion of intrinsic
asymptotic density, with rich relations to both randomness and classical
computability theory. We then apply these ideas to propose alternative
foundations for further development in (intrinsic) generic computability.
Toward these goals, we classify intrinsic density 0 as a new immunity
property, specifying its position in the standard hierarchy from immune to
cohesive for both general and sets, and identify intrinsic density
as the stochasticity corresponding to permutation randomness. We
also prove that Rice's Theorem extends to all intrinsic variations of generic
computability, demonstrating in particular that no such notion considers
to be "computable".Comment: Revised preprint - accepted for publication in Computabilit
- …
