94,508 research outputs found

    Enhancing complex-network synchronization

    Full text link
    Heterogeneity in the degree (connectivity) distribution has been shown to suppress synchronization in networks of symmetrically coupled oscillators with uniform coupling strength (unweighted coupling). Here we uncover a condition for enhanced synchronization in directed networks with weighted coupling. We show that, in the optimum regime, synchronizability is solely determined by the average degree and does not depend on the system size and the details of the degree distribution. In scale-free networks, where the average degree may increase with heterogeneity, synchronizability is drastically enhanced and may become positively correlated with heterogeneity, while the overall cost involved in the network coupling is significantly reduced as compared to the case of unweighted coupling.Comment: 4 pages, 3 figure

    Thesaurus as a complex network

    Full text link
    A thesaurus is one, out of many, possible representations of term (or word) connectivity. The terms of a thesaurus are seen as the nodes and their relationship as the links of a directed graph. The directionality of the links retains all the thesaurus information and allows the measurement of several quantities. This has lead to a new term classification according to the characteristics of the nodes, for example, nodes with no links in, no links out, etc. Using an electronic available thesaurus we have obtained the incoming and outgoing link distributions. While the incoming link distribution follows a stretched exponential function, the lower bound for the outgoing link distribution has the same envelope of the scientific paper citation distribution proposed by Albuquerque and Tsallis. However, a better fit is obtained by simpler function which is the solution of Ricatti's differential equation. We conjecture that this differential equation is the continuous limit of a stochastic growth model of the thesaurus network. We also propose a new manner to arrange a thesaurus using the ``inversion method''.Comment: Contribution to the Proceedings of `Trends and Perspectives in Extensive and Nonextensive Statistical Mechanics', in honour of Constantino Tsallis' 60th birthday (submitted Physica A

    Investigation of a Protein Complex Network

    Full text link
    The budding yeast {\it Saccharomyces cerevisiae} is the first eukaryote whose genome has been completely sequenced. It is also the first eukaryotic cell whose proteome (the set of all proteins) and interactome (the network of all mutual interactions between proteins) has been analyzed. In this paper we study the structure of the yeast protein complex network in which weighted edges between complexes represent the number of shared proteins. It is found that the network of protein complexes is a small world network with scale free behavior for many of its distributions. However we find that there are no strong correlations between the weights and degrees of neighboring complexes. To reveal non-random features of the network we also compare it with a null model in which the complexes randomly select their proteins. Finally we propose a simple evolutionary model based on duplication and divergence of proteins.Comment: 19 pages, 9 figures, 1 table, to appear in Euro. Phys. J.

    Complex network analysis and nonlinear dynamics

    Get PDF
    This chapter aims at reviewing complex network and nonlinear dynamical models and methods that were either developed for or applied to socioeconomic issues, and pertinent to the theme of New Economic Geography. After an introduction to the foundations of the field of complex networks, the present summary introduces some applications of complex networks to economics, finance, epidemic spreading of innovations, and regional trade and developments. The chapter also reviews results involving applications of complex networks to other relevant socioeconomic issue

    Phase transitions in a complex network

    Full text link
    We study a mean field model of a complex network, focusing on edge and triangle densities. Our first result is the derivation of a variational characterization of the entropy density, compatible with the infinite node limit. We then determine the optimizing graphs for small triangle density and a range of edge density, though we can only prove they are local, not global, maxima of the entropy density. With this assumption we then prove that the resulting entropy density must lose its analyticity in various regimes. In particular this implies the existence of a phase transition between distinct heterogeneous multipartite phases at low triangle density, and a phase transition between these phases and the disordered phase at high triangle density.Comment: Title of previous version was `A mean field analysis of the fluid/solid phase transition

    Quantum Google in a Complex Network

    Get PDF
    We investigate the behavior of the recently proposed quantum Google algorithm, or quantum PageRank, in large complex networks. Applying the quantum algorithm to a part of the real World Wide Web, we find that the algorithm is able to univocally reveal the underlying scale-free topology of the network and to clearly identify and order the most relevant nodes (hubs) of the graph according to their importance in the network structure. Moreover, our results show that the quantum PageRank algorithm generically leads to changes in the hierarchy of nodes. In addition, as compared to its classical counterpart, the quantum algorithm is capable to clearly highlight the structure of secondary hubs of the network, and to partially resolve the degeneracy in importance of the low lying part of the list of rankings, which represents a typical shortcoming of the classical PageRank algorithm. Complementary to this study, our analysis shows that the algorithm is able to clearly distinguish scale-free networks from other widespread and important classes of complex networks, such as Erd\H{o}s-R\'enyi networks and hierarchical graphs. We show that the ranking capabilities of the quantum PageRank algorithm are related to an increased stability with respect to a variation of the damping parameter α\alpha that appears in the Google algorithm, and to a more clearly pronounced power-law behavior in the distribution of importance among the nodes, as compared to the classical algorithm. Finally, we study to which extent the increased sensitivity of the quantum algorithm persists under coordinated attacks of the most important nodes in scale-free and Erd\H{o}s-R\'enyi random graphs
    • …
    corecore