3,419 research outputs found

    A Survey on Compiler Autotuning using Machine Learning

    Full text link
    Since the mid-1990s, researchers have been trying to use machine-learning based approaches to solve a number of different compiler optimization problems. These techniques primarily enhance the quality of the obtained results and, more importantly, make it feasible to tackle two main compiler optimization problems: optimization selection (choosing which optimizations to apply) and phase-ordering (choosing the order of applying optimizations). The compiler optimization space continues to grow due to the advancement of applications, increasing number of compiler optimizations, and new target architectures. Generic optimization passes in compilers cannot fully leverage newly introduced optimizations and, therefore, cannot keep up with the pace of increasing options. This survey summarizes and classifies the recent advances in using machine learning for the compiler optimization field, particularly on the two major problems of (1) selecting the best optimizations and (2) the phase-ordering of optimizations. The survey highlights the approaches taken so far, the obtained results, the fine-grain classification among different approaches and finally, the influential papers of the field.Comment: version 5.0 (updated on September 2018)- Preprint Version For our Accepted Journal @ ACM CSUR 2018 (42 pages) - This survey will be updated quarterly here (Send me your new published papers to be added in the subsequent version) History: Received November 2016; Revised August 2017; Revised February 2018; Accepted March 2018

    Lost in translation: Exposing hidden compiler optimization opportunities

    Get PDF
    Existing iterative compilation and machine-learning-based optimization techniques have been proven very successful in achieving better optimizations than the standard optimization levels of a compiler. However, they were not engineered to support the tuning of a compiler's optimizer as part of the compiler's daily development cycle. In this paper, we first establish the required properties which a technique must exhibit to enable such tuning. We then introduce an enhancement to the classic nightly routine testing of compilers which exhibits all the required properties, and thus, is capable of driving the improvement and tuning of the compiler's common optimizer. This is achieved by leveraging resource usage and compilation information collected while systematically exploiting prefixes of the transformations applied at standard optimization levels. Experimental evaluation using the LLVM v6.0.1 compiler demonstrated that the new approach was able to reveal hidden cross-architecture and architecture-dependent potential optimizations on two popular processors: the Intel i5-6300U and the Arm Cortex-A53-based Broadcom BCM2837 used in the Raspberry Pi 3B+. As a case study, we demonstrate how the insights from our approach enabled us to identify and remove a significant shortcoming of the CFG simplification pass of the LLVM v6.0.1 compiler.Comment: 31 pages, 7 figures, 2 table. arXiv admin note: text overlap with arXiv:1802.0984

    Solving the TTC 2011 Compiler Optimization Case with QVTR-XSLT

    Full text link
    In this short paper we present our solution for the Compiler Optimization case study of the Transformation Tool Contest (TTC) 2011 using the QVTR-XSLT tool. The tool supports editing and execution of the graphical notation of QVT Relations languageComment: In Proceedings TTC 2011, arXiv:1111.440

    Solving the TTC 2011 Compiler Optimization Task with metatools

    Full text link
    The authors' "metatools" are a collection of tools for generic programming. This includes generating Java sources from mathematically well-founded specifications, as well as the creation of strictly typed document object models for XML encoded texts. In this context, almost every computer-internal structure is treated as a "model", and every computation is a kind of model transformation. This concept differs significantly from "classical model transformation" executed by specialized tools and languages. Therefore it seemed promising to the organizers of the TTC 2011, as well as to the authors, to apply metatools to one of the challenges, namely to the "compiler optimization task". This is a report on the resulting experiences.Comment: In Proceedings TTC 2011, arXiv:1111.440

    Machine Learning in Compiler Optimization

    Get PDF
    In the last decade, machine learning based compilation has moved from an an obscure research niche to a mainstream activity. In this article, we describe the relationship between machine learning and compiler optimisation and introduce the main concepts of features, models, training and deployment. We then provide a comprehensive survey and provide a road map for the wide variety of different research areas. We conclude with a discussion on open issues in the area and potential research directions. This paper provides both an accessible introduction to the fast moving area of machine learning based compilation and a detailed bibliography of its main achievements

    Less is More: Exploiting the Standard Compiler Optimization Levels for Better Performance and Energy Consumption

    Get PDF
    This paper presents the interesting observation that by performing fewer of the optimizations available in a standard compiler optimization level such as -O2, while preserving their original ordering, significant savings can be achieved in both execution time and energy consumption. This observation has been validated on two embedded processors, namely the ARM Cortex-M0 and the ARM Cortex-M3, using two different versions of the LLVM compilation framework; v3.8 and v5.0. Experimental evaluation with 71 embedded benchmarks demonstrated performance gains for at least half of the benchmarks for both processors. An average execution time reduction of 2.4% and 5.3% was achieved across all the benchmarks for the Cortex-M0 and Cortex-M3 processors, respectively, with execution time improvements ranging from 1% up to 90% over the -O2. The savings that can be achieved are in the same range as what can be achieved by the state-of-the-art compilation approaches that use iterative compilation or machine learning to select flags or to determine phase orderings that result in more efficient code. In contrast to these time consuming and expensive to apply techniques, our approach only needs to test a limited number of optimization configurations, less than 64, to obtain similar or even better savings. Furthermore, our approach can support multi-criteria optimization as it targets execution time, energy consumption and code size at the same time.Comment: 15 pages, 3 figures, 71 benchmarks used for evaluatio

    Compiler Optimization Effects on Register Collisions

    Get PDF
    We often want a compiler to generate executable code that runs as fast as possible. One consideration toward this goal is to keep values in fast registers to limit the number of slower memory accesses that occur. When there are not enough physical registers available for use, values are ``spilled\u27\u27 to the runtime stack. The need for spills is discovered during register allocation wherein values in use are mapped to physical registers. One factor in the efficacy of register allocation is the number of values in use at one time (register collisions). Register collision is affected by compiler optimizations that take place before register allocation. Though the main purpose of compiler optimizations is to make the overall code better and faster, some optimizations can actually increase register collisions. This may force the register allocation process to spill. This thesis studies the effects of different compiler optimizations on register collisions
    corecore