
COMPILER OPTIMIZATION EFFECTS ON REGISTER COLLISIONS

A Thesis

presented to

the Faculty of California Polytechnic State University,

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Computer Science

by

Jonathan Tan

June 2018

c© 2018

Jonathan Tan

ALL RIGHTS RESERVED

ii

COMMITTEE MEMBERSHIP

TITLE: Compiler Optimization Effects on Register

Collisions

AUTHOR: Jonathan Tan

DATE SUBMITTED: June 2018

COMMITTEE CHAIR: Aaron Keen, Ph.D.

Professor of Computer Science

COMMITTEE MEMBER: Theresa Migler, Ph.D.

Professor of Computer Science

COMMITTEE MEMBER: John Seng, Ph.D.

Professor of Computer Science

iii

ABSTRACT

Compiler Optimization Effects on Register Collisions

Jonathan Tan

We often want a compiler to generate executable code that runs as fast as possible.

One consideration toward this goal is to keep values in fast registers to limit the

number of slower memory accesses that occur. When there are not enough physical

registers available for use, values are “spilled” to the runtime stack. The need for

spills is discovered during register allocation wherein values in use are mapped to

physical registers. One factor in the efficacy of register allocation is the number of

values in use at one time (register collisions). Register collision is affected by compiler

optimizations that take place before register allocation. Though the main purpose of

compiler optimizations is to make the overall code better and faster, some optimiza-

tions can actually increase register collisions. This may force the register allocation

process to spill. This thesis studies the effects of different compiler optimizations on

register collisions.

iv

ACKNOWLEDGMENTS

Thanks to:

• My advisor, Aaron Keen, for guiding, encouraging, and mentoring me on the

thesis and classes. Words cannot describe the impact you had on me.

• My committee members (John Seng and Theresa Migler) for taking time out of

their busy schedules to help better my thesis.

• My many great professors that taught me so many invaluable lessons.

• My Dad, Mom, and Brother (Jeffrey Tan, Shirley Her, and Benjamin Tan) for

taking care of me and calling me to check in and see how I am doing.

• My roomates (Andrew Kim, Michael Djaja, Dylan Sun, Pierson Yieh) for en-

couragement to push through the hard times and the great times.

• My entire EPIC family for the continued support and many great laughs and

times throughout college.

v

TABLE OF CONTENTS

Page

LIST OF FIGURES . viii

CHAPTER

1 Introduction . 1

1.1 Register Collisions . 1

1.2 Optimizations . 3

1.3 Motivation . 4

1.4 Contributions . 4

2 Background & Related Works . 5

2.1 Control-Flow Graph . 5

2.2 Live Ranges . 6

2.3 Register Allocation . 8

2.3.1 Interference Graph . 9

2.3.2 Graph Coloring . 10

2.4 Related Works . 11

2.4.1 Heuristics . 11

2.4.2 Graph Coloring Algorithm . 11

3 Setup & Experimental Design . 13

3.1 Clang and LLVM . 13

3.2 Aggregation . 17

3.3 Benchmarks . 18

4 Results & Analysis . 20

4.1 Baseline Graph Anaylsis . 21

4.1.1 Average Register Collisions Across Functions 21

4.1.2 Maximum Register Collisions Across Functions 22

4.1.3 Register Collisions Across Registers 24

4.1.4 Stack Space . 28

4.2 All-Loops Configuration . 28

4.2.1 All-Loops Optimization On 28

vi

4.2.2 All-Loops Optimization Off 32

4.3 General Observations . 35

4.3.1 Stack Space On Optimization 36

4.3.2 Stack Space Off Optimization 40

4.4 Double Optimizations . 41

4.4.1 All-Loops and Argpromotion Optimization 42

4.4.2 Licm and All-loops Optimization 45

4.4.3 Licm and Argpromotion Optimization 50

4.5 Thumb Architecture . 52

4.5.1 All-Loops Optimization . 52

4.5.2 Jump-threading and Early-cse-memssa Optimization 56

4.5.3 Spills Between Architectures 57

5 Future Works & Conclusion . 61

5.1 Future Works . 61

5.1.1 Subject Optimizations . 61

5.1.2 Optimization Combinations 61

5.1.3 Register Allocator . 61

5.1.4 Timings . 62

5.1.5 Architectures . 62

5.2 Conclusion . 62

BIBLIOGRAPHY . 64

APPENDICES

A -O3 Optimization List . 67

B ARM Double Optimization Numbers 69

C Register Collision Graphs . 70

D Double Optimizations Spill Count . 94

vii

LIST OF FIGURES

Figure Page

1.1 Example of the loop-unrolling compiler optimization. Left side is
original loop. Right side is with loop-unrolling applied. 2

2.1 Example of creating a CFG given a program 6

2.2 Example of a live range with virtual registers 7

2.3 Example of Non-SSA form when compared to SSA form 8

2.4 Example of why SSA may be beneficial 9

4.1 Average Reg Collisions by Function, Baseline All Subject
Optimizations Off, No Minimum Register Collisions Threshold . . . 21

4.2 Average Reg Collisions by Function, Baseline All Subject
Optimizations On, No Minimum Register Collisions Threshold . . . 22

4.3 Baseline Average Register Collisions by Function 23

4.4 Baseline Maximum Register Collisions by Function 25

4.5 Baseline Register Collisions by Register 26

4.6 Baseline Stack Space . 27

4.7 Average Register Collisions by Function, All-Loops On 29

4.8 Maximum Register Collisions by Function, All-Loops On 30

4.9 Register Collisions by Register, All-Loops On 30

4.10 Stack Space All-Loops On . 31

4.11 Average Register Collisions by Function, All-Loops Off 33

4.12 Maximum Register Collisions by Function, All-Loops Off 33

4.13 Register Collisions by Register, All-Loops Off 34

4.14 Stack Space All-Loops Off . 35

4.15 x86 Average Register Collisions by Function,
Collision Statistics (Percentage at or Below Threshold) 36

4.16 x86 Maximum Register Collisions by Function,
Collision Statistics (Percentage at or Below Threshold) 37

4.17 x86 Register Collisions by Register
Statistics (Percentage at or Below Threshold) 37

4.18 Stack On LICM . 38

viii

4.19 Stack On Tail Call Elimination . 39

4.20 Stack Off LICM . 40

4.21 x86 Double Optimization Average Collisions by Function, Collision
Statistics (Percentage at or Below Threshold) 42

4.22 x86 Double Optimization Maximum Collisions by Function, Collision
Statistics (Percentage at or Below Threshold) 42

4.23 x86 Double Optimization Register Collisions by Registers, Collision
Statistics (Percentage at or Below Threshold) 43

4.24 Register Level On All-Loops and Argpromotion 44

4.25 Register Collisions by Register Level Off
All-Loops and Argpromotion . 45

4.26 Stack On All-Loops and Argpromotion 46

4.27 Stack Off All-Loops and Argpromotion 46

4.28 Stack On Licm and All-Loops . 48

4.29 Stack Off, Licm and All-Loops . 49

4.30 Stack On, Licm and Argpromotion 51

4.31 Stack Off Licm and Argpromotion 51

4.32 Thumb Average Register Collisions by Function Statistics 53

4.33 Thumb Maximum Register Collisions by Function Statistics 53

4.34 Thumb Register Collisions by Register Statistics 54

4.35 ARM Average Register Collisions by Function, All-loops Off 55

4.36 ARM Stack Space All-loops Off . 55

4.37 ARM Average Register Collisions by Function,
Off Early-CSE-Memssa . 57

4.38 ARM Average Register Collisions by Function,
Off Jump-Threading . 58

4.39 ARM Stack Space Off Early-CSE-Memssa 59

4.40 ARM Stack Space Off Jump-Threading 59

4.41 Number of Spills in the x86 Architecture 60

4.42 Number of Spills in the Thumb Architecture 60

B.1 THUMB Average Register Collisions by Function Statistics 69

B.2 THUMB Maximum Register Collisions by Function Statistics . . . 69

B.3 THUMB Register Collisions by Register Statistics 69

ix

C.1 x86 Average Register Collisions by Function, Off Licm 70

C.2 x86 Average Register Collisions by Function, On Licm 71

C.3 x86 Maximum Register Collisions by Function, On Licm 71

C.4 x86 Maximum Register Collisions by Function, Off Licm 72

C.5 x86 Register Collisions by Register, On Licm 72

C.6 x86 Register Collisions by Register, Off Licm 73

C.7 x86 Average Register Collisions by Function,
Off Tail Call Elimination . 73

C.8 x86 Average Register Collisions by Function,
On Tail Call Elimination . 74

C.9 x86 Maximum Register Collisions by Function,
Off Tail Call Elimination . 74

C.10 x86 Maximum Register Collisions by Function,
On Tail Call Elimination . 75

C.11 x86 Register Collisions by Register, Off Tail Call Elimination 75

C.12 x86 Register Collisions by Register, On Tail Call Elimination 76

C.13 x86 Stack Space, Off Tail Call Elimination 76

C.14 x86 Average Register Collisions by Function, Off
All-Loops and Argpromotion . 77

C.15 x86 Average Register Collisions by Function, On
All-Loops and Argpromotion . 77

C.16 x86 Maximum Register Collisions by Function,
Off All-Loops and Argpromotion 78

C.17 x86 Maximum Register Collisions by Function,
On All-Loops and Argpromotion 78

C.18 x86 Average Register Collisions by Function,
On Licm and All-Loops . 79

C.19 x86 Average Register Collisions by Function,
Off Licm and All-Loops . 79

C.20 x86 Maximum Register Collisions by Function,
On Licm and All-Loops . 80

C.21 x86 Maximum Register Collisions by Function,
Off Licm and All-Loops . 80

C.22 x86 Register Collisions by Register,
On Licm and All-Loops . 81

x

C.23 x86 Register Collisions by Register,
Off Licm and All-Loops . 81

C.24 x86 Average Register Collisions by Function,
On Licm and Argpromotion . 82

C.25 x86 Average Register Collisions by Function,
Off Licm and Argpromotion . 82

C.26 x86 Maximum Register Collisions by Function,
On Licm and Argpromotion . 83

C.27 x86 Maximum Register Collisions by Function,
Off Licm and Argpromotion . 83

C.28 x86 Register Collisions by Register,
On Licm and Argpromotion . 84

C.29 x86 Register Collisions by Register,
Off Licm and Argpromotion . 84

C.30 ARM Average Register Collisions by Function, On All-Loops 85

C.31 ARM Maximum Register Collisions by Function, On All-Loops . . 85

C.32 ARM Maximum Register Collisions by Function, Off All-Loops . . 86

C.33 ARM Register Collisions by Register, On All-Loops 86

C.34 ARM Register Collisions by Register, Off All-Loops 87

C.35 ARM Stack Space, On All-Loops 87

C.36 ARM Average Register Collisions by Function,
On Early-CSE-Memssa . 88

C.37 ARM Maximum Register Collisions by Function,
On Early-CSE-Memssa . 88

C.38 ARM Maximum Register Collisions by Function,
Off Early-CSE-Memssa . 89

C.39 ARM Register Collisions by Register, On Early-CSE-Memssa . . . 89

C.40 ARM Register Collisions by Register, Off Early-CSE-Memssa . . . 90

C.41 ARM Stack Space, On Early-CSE-Memssa 90

C.42 ARM Average Register Collisions by Function,
On Jump-Threading . 91

C.43 ARM Maximum Register Collisions by Function,
On Jump-Threading . 91

C.44 ARM Maximum Register Collisions by Function,
Off Jump-Threading . 92

xi

C.45 ARM Register Collisions by Register, On Jump-Threading 92

C.46 ARM Register Collisions by Register, Off Jump-Threading 93

C.47 ARM Stack Space, On Jump-Threading 93

D.1 Number of Spills in the x86 Architecture
(Double Optimizations) . 94

D.2 Number of Spills in the ARM Architecture
(Double Optimizations) . 94

xii

Chapter 1

INTRODUCTION

The main purpose of a compiler is to generate code. It is generally desirable

that the resulting code is fast. Multiple factors contribute to the performance of the

generated code. Of utmost importance is proper utilization of the memory hierarchy

and registers, in particular. Accessing a value in a register is orders of magnitude

faster than retrieving a value from memory [12]. In addition, optimizing compilers

transform the code to improve processor utilization. This thesis explores the effects

of optimizations on register utilization.

To generate code, there are many phases that the compiler will go through to

translate a high-level language such as Java or C into low-level assembly. This chapter

gives a high-level overview of the compiler process, the optimizations, the motivation,

and the contributions of this thesis.

1.1 Register Collisions

A modern compiler might first parse the source file and create an Abstract Syntax

Tree (AST) that represents the overall structure of the program. The AST is then

converted into an intermediate representation (IR) and a control flow graph (CFG),

which contains the instructions of the language. Any variables in the original language

are translated to symbolic representations or virtual registers in the IR. Because a

compiler can target many different architectures that have a different amount of

physical registers, it assumes that it first has an unlimited number of virtual registers

for use in the IR. The compiler can perform various optimizations to modify the code.

Finally, the compiler performs register allocation where it targets the architecture that

1

the code will run on.

Because the IR may use an unlimited amount of virtual registers, the compiler

needs to map these virtual registers to the actual physical registers that the CPU

architecture supports. One register allocation technique creates an interference graph

where the graph nodes are the virtual registers and the edges represent when the

virtual registers will hold values that are used at the same time. The edges in the

interference graph are a representation of collisions between virtual registers. Register

allocation is then reduced to a graph coloring problem where the physical registers

are the colors. This coloring maps the virtual registers to physical registers. The

number of edges is also linked to register pressure, which is a measure of the number

of values that are simultaneously active or live and will ideally all be mapped to

physical registers.

Figure 1.1: Example of the loop-unrolling compiler optimization. Left side
is original loop. Right side is with loop-unrolling applied.

2

1.2 Optimizations

Code optimization is one of the many phases of the compiler that takes place

before register allocation. When the code is in its IR, the compiler can perform various

optimizations to the IR to improve the final target assembly. Each optimization might

affect the use of virtual registers. If there are more virtual registers that are being

used at the same time, we say that there is higher register pressure, so increasing the

overlap of virtual registers may increase register pressure. Optimizations can also be

run multiple times and in different orders to combat certain inefficiencies that other

optimizations may introduce into the code and may make the overall code a bit more

efficient.

For example, loop unrolling, a compiler optimization seen in Figure 1.1, duplicates

the code within a loop. In the original code, there are five instructions for one iteration

of the loop. After loop-unrolling, there are eight instructions for two iterations (or

four instructions per iteration) of the loop. The duplicated code is updated to use the

correct offset for an additional iteration and increment to get the next two iterations.

Overall, we are able to save an instruction, which can save many CPU cycles if the

loop is executed many times. This optimization can additionally expose opportunities

for other optimizations such as simplifying consecutive L.D (load) and S.D (store)

instructions. A drawback of this optimization is that more virtual registers may be

introduced when unrolling the loop. This may increase register pressure to the point

of causing a spill (the use of memory as a backing store for a register) to occur within

the loop, which can be detrimental to performance. While optimizations are meant

to make the overall code more efficient, they may actually hinder the runtime.

3

1.3 Motivation

Previous studies have focused on improving the efficiency of register allocation

through advanced heuristics [5, 20, 7]. Additionally, researchers have also looked at

different ways of coloring the interference graph [8, 11]. This thesis explores how

compiler optimizations might affect register pressure and whether the optimizations

actually help or hinder the overall performance of the assembly.

1.4 Contributions

This paper explores the effects of select compiler optimizations on register col-

lisions, which is related to register pressure and acts as an upper bound to register

pressure. More specifically, we study register collisions across a suite of programs

to measure general characteristics both with and without optimizations. To see if

there is any significant change in register collisions, we modify Clang, which is the

compiler front end for C/C++ and uses LLVM as its backend. This is used to gather

register collisions and analyze the resulting assembly to see the effects on the stack

space allocated for spills. This paper is organized as follows: Chapter 2 provides

background information on the compiler phases we are looking at and the different

elements that the optimizations will affect and discusses related work. Chapter 3 out-

lines the tool, implementations, experiments, and technologies used in this project.

Chapter 4 presents an analysis of the gathered data. Finally, Chapter 5 proposes

potential future work given the results of this study and concludes the paper.

4

Chapter 2

BACKGROUND & RELATED WORKS

This section gives an overview of important background information related to

the portion of the compiler that this work focuses on. A more in-depth explanation

of the topics can be found in [21].

2.1 Control-Flow Graph

The compiler creates a Control-Flow Graph (CFG) for each function to represent

the flow of control through the function and to store instructions. A CFG contains

nodes that represents basic blocks of code that may potentially be executed. As

control flow constructs, such as an if, else, while, or for statement, are processed, new

nodes are created to hold the instructions that lie within the basic blocks. An edge

then connects from the previous node to any new nodes to signify potential paths

along which execution of the code can follow.

An example of a CFG is given in Figure 2.1, where the left side contains the pro-

gram code and the right side contains the corresponding CFG. The CFG construction

process starts with a node to contain the instructions before a control-flow statement.

When a control-flow statement is reached, new nodes are created to hold the code

that may be executed along different paths, with edges connecting these paths. In

this example, two new nodes are created, one node for the if block and one node

for the else block. After creating the two nodes, an additional node is created that

joins the two paths and that holds the rest of the code following the control-flow

statement. When working with loops, a node may indirectly link to itself to execute

the loop body multiple times. The nodes in Figure 2.1 contain C code for illustrative

5

Figure 2.1: Example of creating a CFG given a program

purposes, but would typically be translated to the IR the compiler is using and could

eventually be translated to the target assembly.

2.2 Live Ranges

The compiler represents variables used in the original code and intermediate values

as symbolic placeholders or virtual registers in the IR. Virtual registers are used as

an abstraction of the actual target architecture. The compiler can potentially use a

different number of virtual registers before and after optimizations. The live range

of a register is the union of the sequences of instructions from each instruction that

defines the register (i.e. targets it) to the last instruction that uses that definition.

Figure 2.2 gives an example of the live ranges of virtual registers. The bars

depict the live range of each register. Note that v1 and v2 are not defined by these

instructions so their live ranges begin prior to this code segment.

The compiler could use the same virtual register for a single identifier in the

6

Figure 2.2: Example of a live range with virtual registers

original source code throughout the IR and then allocate one physical register for

that virtual register when coloring. This may cause that virtual register’s live range

to collide with many other registers and potentially make the graph uncolorable more

often because there are less colors available to assign other virtual registers. To

mitigate long live ranges, many compilers split the live range when a variable is

redefined; this can be accomplished using static single assignment form (SSA). SSA

uses a new virtual register each time a new value is computed and each variable

definition is then updated within the compiler with that value. When that value is

needed for computation again, the compiler will use the most recent virtual register

as the representation for that value. This essentially splits the live range for each

definition of a value used in the code and makes the resulting interference graph

simpler. An example can been seen in Figure 2.3. v3 and v4 are split into new

virtual sub-registers each time they are assigned a new value. Note that in this

example, under non-SSA v3 conflicts with both v4 and v2. Under SSA, v30 and v2

conflict, but not with v4.

Figure 2.4 shows another example of how SSA form may be beneficial. Without

SSA form, variable a’s live range would collide wi th many of the other virtual registers

in multiple blocks. By splitting a into different virtual registers a1, a2, a3, a4, variable

7

Figure 2.3: Example of Non-SSA form when compared to SSA form

a now has different pieces that intersect with only the other registers in its respective

block. Note that the union of the sub-registers of a will effectively go back to non-SSA

form of using one virtual register for a. SSA is primarily beneficial because it encodes

the use-def chains (the most recent virtual register that contains the value needed) of

the virtual registers and makes analysis and optimizations on the code more efficient

[3, 10], but the partitioning of live ranges also provides benefits.

2.3 Register Allocation

Register allocation is the process of mapping the set of virtual registers to the

more limited set of physical registers. There are various register allocation methods

including linear scan [18], a combinatorial approach [19], and graph coloring [6].

This thesis frequently references, as a concrete example, a variation of the graph

coloring approach which was introduced and formalized by Chaitin in 1982 [6]. Note

that the effects of register pressure are independent of the graph coloring algorithm,

but register pressure may affect how well the graph coloring algorithm performs.

Chaitin’s approach starts with building an interference graph and then applying a

8

Figure 2.4: Example of why SSA may be beneficial

graph coloring algorithm.

2.3.1 Interference Graph

The interference graph contains information about which virtual registers are

used concurrently with other virtual registers. In the interference graph, each virtual

register is a node, and when the live ranges of two virtual registers intersect at any

point in the IR, an edge connects the two corresponding nodes.

Recall the live ranges in Figure 2.2. In our example, v1 would need to be placed

in a physical register and v2 would need to be placed in a different physical register

because their values are live at the same time. Furthermore, in this example, v1 will

have an edge to every other node in this subgraph because its live range intersects

with all of them, whereas v2 will only have an edge to v1 and v3. From this simple

example, we can see that an optimization that might move the print(v1) instruction

immediately after the first instruction would reduce the live range of v1 and, thus,

9

the number of edges found in the interference graph.

2.3.2 Graph Coloring

The problem of register allocation as encoded in an interference graph reduces to

a graph coloring problem. We want to assign physical registers to the virtual registers

and the interference graph denotes when two registers cannot be in the same physical

registers. We can then use the physical registers as the colors available to color the

interference graph, guaranteeing that adjacent nodes (conflicting virtual regs) are

assigned different colors (physical registers).

Graph coloring is an NP-Hard problem [14]. Because of the complexity of coloring

a graph, there are a variety of graph coloring algorithms that reduce the time it

takes to find a coloring at the cost of not being able to find a coloring unless the

graph is simplified. Some of these expand on the original work of Chaitin, such as

the Chaitin-Briggs algorithm [4], that focuses on using heuristics for simplifying the

graph. Another approach to graph coloring is semidefinite programming that builds

on the concept of 3-colorable graphs and approximates how many colors are actually

needed to color the graph of k-colors [13].

If the graph coloring algorithm cannot find a proper coloring, it will insert spill

code to effectively reduce the live range for that particular virtual register. The

spill code includes a store instruction after the virtual register is defined and a load

instruction right before the virtual register is used. Spilling makes the resulting code

less efficient because of the extra instructions and the extra cycles the CPU needs to

spend waiting for the value to be stored to or loaded in from memory. The quality of

register allocation is thus dependent on compiler optimizations because optimizations

may change live ranges and, in so doing, register pressure. The ideal final assembly

code keeps all the values in fast registers and does not spill.

10

2.4 Related Works

Some research related to register pressure and allocation focuses on developing

heuristics to choose which register to spill or modifying the way the graph coloring

algorithm chooses registers to color.

2.4.1 Heuristics

A way to reduce the costs of spills is to use heuristics to choose which register to

spill. One heuristic is to look at program structure as a whole to avoid spills from

being inserted in a spot that can cause the overall code to slow down. One method,

the Callahan-Koblenz algorithm [9], looks at the overall program structure (e.g. the

CFG and code blocks) and chooses registers to spill given those properties. It can also

choose where to put the spill code to potentially avoid continuous memory accesses

from happening within a loop and to choose the more ideal registers to spill.

Other studies try splitting or combining live ranges to change the interference

graph presented to the graph coloring algorithm [16]. Another heuristic is to use the

properties of nodes in the interference graph as seen in [5, 20, 7]. They look specifically

at the interference graph and use properties of the graph to choose which register

to spill. Common methods include removing the node with the highest amount of

edges to find a coloring faster or analyzing and creating a directed graph from the

interference graph to figure out which node can potentially split the graph into smaller

subgraphs.

2.4.2 Graph Coloring Algorithm

Other related works look specifically at the graph coloring algorithm and propose

changes to how to color the interference graph. In [8], a decoupled approach is taken

11

by using both the graph coloring and linear scan methods. The method introduces

spills early and takes advantage of both to assign the physical registers. Xavier, et.

al. [11] compare the basic, fast, greedy, and pbqp graph coloring algorithms found in

the clang compiler [15]. They concluded that the greedy algorithm produced code

with fewer cache accesses and generated the least amount of spill code, but took the

longest time to compile. They also concluded that fast and basic were good options

if the goal is faster compile time.

12

Chapter 3

SETUP & EXPERIMENTAL DESIGN

To examine the effects that compiler optimizations have on register pressure, we

instrument the Clang/llvm compiler to report the number of collisions for each virtual

register. Various optimizations are toggled to collect collision data under different

configurations. This information is aggregated using Python to present a summary

of the results.

3.1 Clang and LLVM

This study uses the llvm version 5.0 ecosystem that has Clang as the C compiler

and targets llvm. To explore the effects of optimizations on register collisions, various

configurations of optimizations are explored. Clang has an optimization flag “-O3”

that turns on all possible optimizations for the compiler. A complete list of the

optimizations that are run with this flag can be found in Appendix A. The set of

all possible configurations, however, is too expansive. Instead, this study focuses on

configurations from a subset of optimizations deemed to potentially affect register

pressure the most, but also considered to be potentially optional. This choice was

made to limit the number of configurations with the hope of exposing edge case

optimizations.

Below is a list of the optimizations included in this study, each with a short

description. These were identified as likely to affect register pressure.

loop-distribute

Distribute loops that cannot be vectorized due to dependence cycles. Tries

13

to isolate the offending dependencies into a new loop for vectorization of

remaining parts.

loop-rotate

Put loops into canonical form to expose opportunities for other optimiza-

tions.

loop-unroll

Perform loop unrolling utility to duplicate the body of the loop.

loop-unswitch

Transform loops that contain branches on loop-invariant conditions to mul-

tiple loops based on a threshold.

loop-vectorize

Combine consecutive loop iterations into a single wide iteration. Index is

incremented by SIMD vector width.

argpromotion

Promote “reference” arguments to be “by value” arguments.

dse

A trivial dead store elimination that deletes local redundant stores.

early-cse-memssa

An early simple dominator tree walk that eliminates trivially redundant

instructions.

globaldce

14

Global dead code elimination is designed to eliminate unreachable internal

globals from the program.

indvars

Canonicalize induction variables to transform induction variables to sim-

pler forms suitable for subsequent analysis and transformation.

jump-threading

Find distinct threads of control flow running through a basic block and if

a predecessor of a block can prove to always jump to a successor, the edge

is forwarded.

licm

Loop invariant code motion attempts to remove as much code from the

body of a loop as possible by hoisting code to a preheader block or sinking

code to an exit block if safe.

memoryssa

Provides an SSA based form for memory with def-use and use-def chains

for users to find memory operations quickly.

sccp

Sparse conditional constant propagation rewrites provably constant vari-

ables with immediate values and constant conditional branches with un-

conditional jumps.

sroa

15

Scalar replacement of aggregates breaks up alloca instructions of aggregate

types into individual alloca instructions for each member and transforms

them into clean scalar SSA form.

tailcallelim

Tail Call Elimination transforms a call from the current function that does

not access the stack frame before executing a return instruction into a

branch to the entry of the function being called.

Data is collected for the following configurations based on the experiment’s sub-

ject optimization. There are two starting baselines. For the first baseline, we have

the set of -O3 optimizations turned on with the subject list turned off. We then turn

on each of the subjects independently. For the second baseline, we start with the full

-O3 optimizations and then turn each of the subjects independently off. Additional

experiments were run by combining subjects based on analysis of these initial con-

figurations and what we thought would greatly affect register collisions based on the

nature of the subjects.

These experiments are conducted over multiple steps. First, a source file to ex-

amine is compiled to llvm using clang. This step does not perform any compiler

optimizations. The llvm files are then run through opt, with applicable compiler

optimization flags, to produce another llvm file with the optimizations applied.

Once the llvm files for each configuration in the set are created, each llvm file is

processed by llc, which will compile the llvm file to create an assembly file. As part

of compilation, llc builds the interference graph and performs register allocation to

assign the virtual registers to physical registers of the target machine. We modified

llc to write to a JSON file with the information of which virtual registers collide with

other virtual registers. We do this instrumenting llc’s basic register allocator, right

16

before the coloring algorithm takes place, to report register collisions. The instru-

mentation code loops through all possible pairs of virtual registers and calls clang’s

overlaps function, which returns true if a virtual register overlaps with another one.

If it is true, the two registers are logged to a JSON file. Note that the modified llc

outputs a JSON file per function and that this information is enough to rebuild the

interference graph representation that is used for coloring.

3.2 Aggregation

Once the register information is in the JSON files, a Python script is run to count

the number of register collisions and to aggregate the data. To get a sense of the

register collisions per function, the maximum number of collisions and the average

number of collisions are calculated. This data is analyzed at the function level and

across all functions. To see the effects of register collisions at a register level, the

number of collisions for each individual register is also calculated. Finally, to see the

effects that register collisions may have on stack space, the stack size data is gathered

from the generated assembly files. This is done by processing the assembly file for

the comment “-byte spill”, which indicates that there is spill code inserted at that

line in the code. This comment also includes a number before indicating how many

bytes were allocated on the stack for the spill so we sum the bytes together.

MatPlotLib is used to graph all the data. The resulting graphs show, for each

subject optimization toggled on and off, the average and max register collisions across

functions, the number of collisions of registers across registers, and the stack size

generated.

17

3.3 Benchmarks

The benchmarks include programs from the SPEC CPU2000 Benchmarks [2] and

programs downloaded from Github. This set represents a sampling of real-world

programs. Below is a list of the programs along with a brief description of what they

do:

164.gzip - GNU zip compression algorithm.

175.vpr - Versatile place and route algorithm for an integrated circuit computer-

aided design program.

176.gcc - Gcc version 2.7.2.2 that generates code for a Motorola 88100 proces-

sor.

181.mcf - Derived from a program used for single-depot vehicle scheduling in

public mass transportation.

186.crafty - High-performance computer chess program made around a 64-bit

word.

197.parser - Link grammar parser is a syntactic parser of English, based on a

link grammar.

253.perlbmk - A cut-down version of perl v5.005 03, the once popular scripting

language.

254.gap - A standard gap-speed benchmark exercising combinatorial functions,

a big number library, and test functions for a finite field.

255.vortex - A single-user, object-oriented database transaction benchmark

which exercises a system kernel coded in C.

18

256.bzip2 - Compression and decompression algorithm extending bzip that

performs no file I/O other than reading input.

300.twolf - Algorithm that determines placement and local connections for

groups of transistors which constitute the microchip.

capnproto - A protocol for sharing data capabilities.

ccv - A portable modern computer vision library.

CHL - A hypertext library for writing web applications in C.

crypto-algorithms - Standard implementations of cryptographic algorithms

such as AES and SHA1.

dht - A variant of Kademlia distributed hash table used in a bittorrent network.

hiredis - A minimalistic C client library for the Redis database.

http-parser - A Parser for HTTP messages in C that parses both requests and

responses.

huffman - An implementation of the huffman lossless data compression algo-

rithm.

Kore - A scalable and secure web application framework for writing web APIs

in C.

lz4 - A fast lossless compression algorithm.

SilverSearcher - A code searching tool similar to ack with a focus on speed.

SQLite - A lightweight portable database system written in C.

zlib - A general purpose data compression library.

19

Chapter 4

RESULTS & ANALYSIS

This section covers the results of each configuration of optimizations. We start by

covering the baseline configuration (i.e. average register collisions across functions,

maximum register collisions across functions, register collisions across registers, and

the stack space). We then move onto analyzing specific configurations that give

interesting results and then discuss general trends. Analysis of the effects of two

optimizations toggled on or off together follows. We conclude by comparing the x86

architecture to the Thumb (ARM) architecture to see if there are any interesting

differences between them.

The graphs include a line at the 16 and 32 register collision points because these are

common sizes for a processor’s register file. For example, on the x86-64 architecture,

there are 32 registers available, but only about 16 are used for the current program

running. Note that some of those 16 registers are reserved for the stack pointer,

program counter, and passing variables to functions to run the program so the actual

registers available may actually be less.

To avoid trivial functions that are too simple and that do not provide any inter-

esting register collision statistics, a check for functions that have at least five register

collisions is included in the script. An example of the graph with no threshold can

be seen in Figures 4.1 and 4.2, but for the rest of the graphs, we have the threshold

script on. This check effectively zooms in on the portion of the graph that is more

likely to be affected by the optimizations. This removes most trivial functions and

makes it easier to spot differences between optimizations. Note that there is one

function found in the gcc benchmark that has a switch statement that extends over

roughly 2,000 lines of code and 374 cases. This function is one of the many contribu-

20

tors, among a couple of others, to cause larger numbers to appear in the graphs. For

register collisions by register, we include every single register regardless of whether

the function met the requirements.

Figure 4.1: Average Reg Collisions by Function, Baseline All Subject
Optimizations Off, No Minimum Register Collisions Threshold

4.1 Baseline Graph Anaylsis

4.1.1 Average Register Collisions Across Functions

The baseline average register collisions across functions, with subject optimization

on and off, look relatively similar. The interesting points are that when all subject op-

timizations are off, shown in Figure 4.3a, 84.95% of functions are below 16-collisions.

In Figure 4.3b, 84.19% of functions are below the 16-register mark for all subject

optimizations on. Looking at the average register collisions per function, compiler

optimizations overall increased register collisions across all functions. The maximum

21

Figure 4.2: Average Reg Collisions by Function, Baseline All Subject
Optimizations On, No Minimum Register Collisions Threshold

number of collisions that occur in average register collisions however, increased from

128.02 to 137.62 collisions from optimizations off to on, respectively.

4.1.2 Maximum Register Collisions Across Functions

The baseline maximum average register collisions across functions are different

for subject optimizations on and off. Because the maximum register collision value

is taken per function and it has a better chance of meeting the requirements of at

least five collisions for the script, there are more data points for this graph compared

to the average register collisions across functions. In Figure 4.4a, the 16-register

mark is at 49.31% for all optimizations off. In Figure 4.4b, the 16-register mark is at

49.42% for all optimizations on. At the maximum register collision level, the effects

of optimizations differ from the trend that happens on an average level. Turning on

22

(a) Average Reg Collisions by Function, Baseline All Subject Optimizations Off

(b) Average Reg Collisions by Function, Baseline All Subject Optimizations On

Figure 4.3: Baseline Average Register Collisions by Function

23

optimizations actually caused an extra 0.11% of functions to now meet the 16 collisions

mark. Overall on the graph, there are slight shifts of the line to the right signifying

smaller maximum values for a few functions. Functions towards the 80-100% range

do seem to increase slightly in maximum register collisions (line is slightly towards

the left). Looking at the maximum value in the graph, there was an in increase from

1463 to 1577 collisions, so the optimizations did increase the maximum collisions for

a function by a significant amount in that range.

4.1.3 Register Collisions Across Registers

The baseline for average register collisions on the register level has a slight differ-

ence as seen in Figures 4.5b and 4.5a. All subject optimizations on when compared

to all subject optimizations off increases the amount of collisions that happen. The

data shows that 0.88% of registers are increased to above or at the 16-intersection

line, 0.54% of registers are increased to above or at the 32-intersection line, and the

maximum collisions has increased by 114.

This data is consistent with the average register collisions per function graph. The

difference between the on and off optimization baselines is small and the amount of

registers that changed reflected that. Note that the change in the number of collisions

is minimal and the number does not get higher until the later ranges. With more

registers colliding with other registers, it caused some functions to increase in register

collisions and caused the average and maximum values to increase for some parts.

Observe that at around the 15% range, the collisions for some registers were decreased,

which explains why the maximum register collisions by functions decreased slightly

for some of the functions in the previous graphs. Overall, most registers experience

an increase in number of collisions.

24

(a) Maximum Reg Collisions by Function, Baseline All Subject Optimizations Off

(b) Maximum Reg Collisions by Function, Baseline All Subject Optimizations On

Figure 4.4: Baseline Maximum Register Collisions by Function

25

(a) Register Collisions by Register, Baseline Subject Optimizations Off

(b) Register Collisions by Register, Baseline Subject Optimizations On

Figure 4.5: Baseline Register Collisions by Register

26

(a) Stack Space Baseline All Subject Optimizations Off

(b) Stack Space Baseline All Subject Optimizations On

Figure 4.6: Baseline Stack Space

27

4.1.4 Stack Space

The stack space caused by spills differed by a significant amount when comparing

the configurations for all subject optimizations on versus all subject optimizations

off. By turning on optimizations, about 2.7% of functions have more spills and their

stack space allocated increased. The maximum stack space increased from 1876 bytes

for no optimizations to 3352 bytes for having all optimizations on.

The stack space data agrees with the rest of the baseline graphs. Generally, having

subject optimizations on increased the amount of register collisions that occured at

the function and register level. At the function level, it increased certain functions

slightly. At the register level, it caused more registers to collide with each other.

The maximum number of collisions also increases by 114 and thus it causes the stack

space to increase. This shows that although compiler optimizations are meant to

help clean up code and make it more efficient, it may actually hinder performance by

introducing many spills.

4.2 All-Loops Configuration

For this configuration, any optimizations that have to deal with loops are grouped

and toggled on or off together. The optimizations grouped together include: loop-

distribute, loop-rotate, loop-unroll, loop-unswitch, and loop-vectorize.

4.2.1 All-Loops Optimization On

The all-loops configuration on (with other subject optimizations off) did not par-

ticularly change register collisions as seen in Figure 4.7. At the 16-collisions line,

84.94% of functions meet the line compared to the baseline value of 84.95%. So 0.01%

of functions experienced an increase in register collisions slightly. The 32-collisions

28

line and maximum value stayed the same.

Figure 4.7: Average Register Collisions by Function, All-Loops On

Looking at the maximum register collisions in Figure 4.8, the all-loops optimiza-

tion also did not seem to change much from the baseline. It increased maximum

register collisions by function overall by 0.01% at the 16-collisions line and by 0.02%

at the 32-collisions line. All-loops very slightly increases register collisions by function

for a few functions.

The results of all-loops increasing register collisions can be seen in Figure 4.9. At

the register level, all-loops does not seem to affect register collisions at all. The line

created by turning the subject optimization on does not seem to change the amount

of register collisions or changes an insignificant amount of them to notice from the

graph.

The effects of turning all-loops on can be seen when we look at the stack space

29

Figure 4.8: Maximum Register Collisions by Function, All-Loops On

Figure 4.9: Register Collisions by Register, All-Loops On

30

Figure 4.10: Stack Space All-Loops On

allocated in the assembly files in Figure 4.10. Functions, overall, now allocate more

stack space due to spills. The maximum value for stack space is also increased by

104 bytes when compared to the baseline. Looking at the generated assembly code,

specifically at loops and spills that happen within loops, more spills seem to occur in

the main body of the loop and less spills occur at the beginning of the loop where

offsets are calculated. These optimizations are expected to cause more spills when

turned on mainly because loop-unroll unrolls loops and adds more register usage

within the body of the loop. This may cause more spills to occur in that area. Loop-

distribute and loop-vectorize attempt to minimize the amount of offset calculations

by vectorizing offsets, thus more spills are removed at the beginning or ending of

the loops where offsets for the next iteration are calculated. Generally, more spills

happen with the loop optimizations and as a result, they increase stack space for

functions. The register collisions that we saw earlier, however, did not seem to reflect

31

these changes. In the assembly code, the number of registers stayed the same, but

the placement of their live-ranges was shifted. To cause the spill, the live ranges

were probably shifted in such a way that the coloring algorithm had to spill to be

able to color the interference graph. Another reason why register collisions did not

shift much is probably the lack of other optimizations. The loop optimizations may

depend on other optimizations to open up opportunities for the optimization to be

able to actually be useful to register collisions.

4.2.2 All-Loops Optimization Off

Toggling all-loops off helps functions reduce average register collisions by function

from the 40-95% range as seen in Figure 4.11. This is seen by observing that the line

moves to the right of the original baseline. This means that not having any loop opti-

mizations actually helps reduce average register collisions for many functions. 1.03%

of functions were now able to meet the 16-register collision mark when compared to

having all subject optimizations on. The 32-collisions threshold changes slightly by

0.22% more functions that now meet that mark. The maximum register collisions

was also reduced from 137.62 to 123.1 collisions between the baseline and all-loops

configuration.

Comparing the maximum register collisions by function for all-loops to the base-

line, we see another reduction in register collisions as seen Figure 4.12. At 16-

collisions, there is a difference of 1.75% functions that now have 16-collisions with

all-loops turned off. The difference gets larger with a value of 2.47% at the 32-

collisions line and those functions actually have slightly increased register collisions.

The maximum value is reduced by 3 register collisions. Overall from the 55-100%

range, there is a reduction of about 1-4 collisions and more functions were shifted to

have a lower maximum register collision by function.

32

Figure 4.11: Average Register Collisions by Function, All-Loops Off

Figure 4.12: Maximum Register Collisions by Function, All-Loops Off

33

The register collisions at the by-register level behave as one would expect when

following the pattern of what has been happening in the average and maximum reg-

ister collisions by-function as seen in Figure 4.13. When all-loops is turned off, the

register collisions are decreased by a small amount for a small percentage of regis-

ters. About 1.29% of registers are shifted downward to meet the 16-collisions line and

0.51% of registers are also shifted downward to meet the 32-collisions line. Looking

at the maximum value, the number of collisions is reduced by 3.

Figure 4.13: Register Collisions by Register, All-Loops Off

The stack space change resulting from turning off all-loops varies as seen in Fig-

ure 4.14. The stack space increases for roughly 23% of functions starting at the 42%

mark, but then it reduces starting at around the 77% mark. Turning off all-loops

also reduced the maximum stack space, when compared to the baseline of all opti-

mizations on, by 512 bytes. This is interesting, because for some functions, having

all-loops on helps reduce spills and for other functions, it increased spills. Within the

34

assembly code, the registers did not have their live ranges shifted around from the

loop optimizations, so the spills that occur within the loops are not observed. The

general difference of the structure of the code is that the spills occur outside of loops,

in the header, or other blocks because of the other optimizations affecting the code.

Figure 4.14: Stack Space All-Loops Off

4.3 General Observations

Many of the other configurations produced about the same results. The graphs

for average function, maximum function, and register level collisions for the general

optimization case can be seen in the appendix. To give a better sense of how the

optimizations affect register collisions, we aggregate all the data for register collisions

and put them in the chart as seen in Figures 4.15, 4.16, and 4.17. The “Off” means

that all optimizations were on and the corresponding optimization is turned off and

35

vice versa for “On”. For baseline “Off”, nothing is turned off or they are all on

and vice versa for “On”. Looking at the tables, many of the optimizations give

about roughly the same results, with the exception of a few, when comparing the

numbers between each single toggle optimization. In particular, argpromotion seemed

to have the highest change in average register collisions by function and reduced it.

Jump-threading seemed to change the maximum register collisions the most for the

maximum column. It has 1577 collisions (the highest increase) when turning it on

and 1514 collisions when turning it off. Licm is another interesting optimization that

seemed to deviate from the pattern of the other optimizations in register collision by

registers. Many of the other optimizations have around 72.6% of functions that hit

the 16-collisions line when turning it off, but licm is at 73.24% of functions that hit

the 16-collisions line (slightly below the value of all-loops).

Figure 4.15: x86 Average Register Collisions by Function,
Collision Statistics (Percentage at or Below Threshold)

4.3.1 Stack Space On Optimization

Looking at the general stack space “on” configurations, all of the optimizations

that were toggled “on” increased the amount of spills that occurred in the assembly

36

Figure 4.16: x86 Maximum Register Collisions by Function,
Collision Statistics (Percentage at or Below Threshold)

Figure 4.17: x86 Register Collisions by Register
Statistics (Percentage at or Below Threshold)

37

Figure 4.18: Stack On LICM

slightly, but most of the maximum values stayed the same. Jump-threading is an

optimization that did reduce stack space for many of the functions and reduces the

maximum stack space by 128 bytes. Turning this optimization on gave the best

result in terms of stack space when compared to the stack spaces created by other

optimizations.

The optimization that seemed to increase the stack space the most for many

functions is licm followed by tailcallelim as seen in Figure 4.18 and 4.19. The full

graphs for these can be found in Appendix C.1 - C.6 and C.7 - C.13.

Upon closer inspection of the register collision numbers, licm and tailcallelim

did not seem to differ greatly from the pattern that other optimizations have across

register collisions. In the assembly, for licm-on configuration, there are a couple more

lines of code in the loop preheader that load values into registers. For tailcallelim,

38

it changes multiple recursive calls into one recursive call, with an extra branch that

jumps back to the original block and creates a loop. In a particular example, found

in huffman, tailcallelim actually caused an extra spill to occur because of the loop

back into the block.

Generally, both of these optimizations move code from blocks to other blocks or

create more blocks to increase performance, and they both end up increasing the

amount of spills by the greatest amount according to the graphs. A possible cause

could be the way that these optimizations move code around. They extend live ranges

for certain registers and may affect the interference graph in such a way that it causes

the graph coloring algorithm to spill more before it actually becomes colorable.

Figure 4.19: Stack On Tail Call Elimination

39

Figure 4.20: Stack Off LICM

4.3.2 Stack Space Off Optimization

At the other end of the spectrum, for general stack space off configurations, many

of the optimizations that were toggled off varied in how they affected the stack space.

For example, argpromotion increased stack space slightly, while early-cse-memssa

decreased stack space slightly. The biggest reduction in stack size that affected most

functions is found in turning off licm. By turning off licm, the maximum stack space

was reduced by 1356 bytes (from 3352 to 1996 bytes). For about 35% of functions,

the stack space was reduced by about 4-8 bytes. Aside from these, most of the other

optimizations did not seem to have any impact on stack space.

40

4.4 Double Optimizations

After looking at the single optimization configuration, we take a closer look at the

effects of turning two optimizations on or off concurrently. Again, the combinations of

optimizations is numerous, so we choose the more interesting optimizations based on

the results from the single optimization analysis and choose the second optimization

based on what we think will help reduce collisions. All-loops is one of the more

interesting optimizations and we thought that argpromotion would be beneficial to

replace any memory references that may be happening within a loop and reduce the

amount of extra allocas in the code. This would reduce the amount of extra registers

needed within a loop and may reduce spills from happening. Memoryssa would also be

another beneficial option to reduce any multiple memory access operations happening

within a loop, so we also pair that with all-loops.

Licm is another interesting optimization because it causes many spills and reduces

many spills when turned off. We pair it with all-loops to see if having loop optimiza-

tions would help the purpose of licm, which is to take as much code out of the loop

block. Having code out of the loop block and then applying the loop optimizations,

can help reduce the amount of registers being used in a loop. For example, loop-

unroll would duplicate less code found within the loop and can potentially reduce

stack space used. Additionally, we also wanted to pair licm with argpromotion to

see if it would reduce the number of register collisions, help simplify the interference

graph, and reduce the stack space allocated similarly to all-loops.

We present only all-loops/argpromotion, licm/all-loops, and licm/argpromotion

double optimizations in this analysis because memoryssa/all-loops did not change

anything in the register collisions or stack space when compared to only all-loops.

The single optimization data suggests that all-loops is creating opportunities for other

optimizations to make the overall code better, so we examine licm/argpromotion to

41

test a pair of optimizations that does not include all-loops.

Figures 4.21, 4.22, and 4.23 show the data collected in general for having two op-

timizations on. Note that some of the graphs in these sections are found in Appendix

C.

Figure 4.21: x86 Double Optimization Average Collisions by Function,
Collision Statistics (Percentage at or Below Threshold)

Figure 4.22: x86 Double Optimization Maximum Collisions by Function,
Collision Statistics (Percentage at or Below Threshold)

4.4.1 All-Loops and Argpromotion Optimization

All-Loops individually did not cause too much change to register collisions, but

it caused an increase to the stack space needed for spills for many functions. After

pairing it with argpromotion and turning both of these optimizations on, there was

still very little change in the average and maximum register collisions by function. In

42

Figure 4.23: x86 Double Optimization Register Collisions by Registers,
Collision Statistics (Percentage at or Below Threshold)

the average register collisions by function graph seen in Appendix C.15, the line stayed

the same when compared to turning on only all-loops. Looking closely at the graph,

there is a slight change in average register collisions by function, but the change is very

little. In the maximum register collisions by function graph in Appendix C.17, there

was very little change; 0.14% of functions were moved above or at the 16-collisions

line, 0.04% of functions were moved above or at for the 32-collisions line, and it seems

that a few functions have a small increase in maximum register collisions after the

32-collisions mark. The maximum register collisions by function maximum value also

did increase from 1463 to 1511 collisions.

The same trend appears when we turn off both of these optimizations. In the

average and maximum register collisions by function graphs, the difference is very

small in the register collisions that occur except for a few functions. This can be

seen in Figure 4.25. When compared to only all-loops off, for the average register

collisions by function, turning the pair off causes 0.01% of functions to go above or

at the 16-collisions line, meaning there is a slight increase in register collisions. The

rest of the functions do not seem to be affected. At the maximum register collisions

by function graphs, turning the pair off causes 0.08% of functions to be able to meet

the the 16-collisions line, meaning there is a slight reduction in register collisions

across some functions, but the maximum value remains the same. The same effect

43

Figure 4.24: Register Level On All-Loops and Argpromotion

can be seen in register collisions by register where some of the registers are reduced

in register collisions by having the optimizations off. 0.01% extra functions now meet

the 16-collisions line (small decrease in collisions), but most of the other registers stay

the same or move slightly down.

For the average and maximum function register collision numbers for both con-

figurations of turning them on and off, many of the percentages did not differ from

the percentages generated from the configurations with only one optimization. The

amount that the stack size changes reflect the changes in register collisions. The

effects of turning on and off the two optimizations can be seen in Figure 4.26 and

4.27. Turning on the optimizations increased stack size slightly when compared to

only looking at all-loops on. This trend agrees with what we see in the maximum

register collisions, where a small amount of functions did have a slight increase in the

number of collisions, so the stack space also grows slightly. The maximum stack size,

44

Figure 4.25: Register Collisions by Register Level Off
All-Loops and Argpromotion

however, remains the same even though the maximum collisions increased. Turning

off both optimizations, the stack sizes have slight portions where the stack size for the

functions increase and other portions where the stack size for the functions decrease.

The overall change is very insignificant and the graph looks very similar to the stack

space of only turning all-loops off. Turning off these optimizations both increased

and decreased register collisions in functions in our benchmarks.

4.4.2 Licm and All-loops Optimization

Licm (loop invariant code motion) is meant to hoist or sink code happening

inside of a loop to outside of the loop block. We think that pairing this with all-loops

can possibly improve register collisions and stack space allocated for spills. Licm is

an optimization that has roughly the same number of average register collisions by

45

Figure 4.26: Stack On All-Loops and Argpromotion

Figure 4.27: Stack Off All-Loops and Argpromotion

46

function when turning the optimization off and comparing it to its respective baseline.

The graphs for licm can be found in Appendix C.1 - C.6. When licm is turned on and

compared to the baseline on, the average register collisions by function is reduced and

0.62% of functions meet the 16-collisions line or a decrease in collisions. The number

of functions that decrease in register collisions is a smaller number as we look at the

32-collisions line, only 0.04% of additional functions now meet it. There is a slight

increase in register collisions from the 95-98% range and the maximum value for the

average is decreased by 3.22 collisions. For maximum register collisions by function,

many functions experienced a decrease in register collisions. 1.87% of functions now

meet the 16-collisions line and 2.53% of functions now meet the 32-collisions line. The

maximum value was also decreased by 3 collisions. For register collisions by register,

0.7% of registers were reduced in register collisions at the 16-collisions line and 0.14%

of registers were reduced in register collisions at the 32-collisions line. The stack

space created, however, does not agree with the trend of the decrease in the amount

of register collisions. Many of the stack spaces for functions were actually increased

slightly. This is probably because of the change in live ranges that licm causes by

shifting registers higher or lower than they are, meaning that in this case, register

collisions may not be the best indicator of what the stack space is like.

Turning off licm individually did not significantly change the lines for register

collisions, but the stack size decreased for functions overall. When compared to the

baseline, the maximum stack space was reduced by 1356 bytes.

When both optimizations are on (licm and all-loops), the number of average reg-

ister collisions by function varies throughout the graph. These graphs can be seen in

Appendix C.18 - C.23. When comparing it to the average register collisions for only

having licm on, the number of collisions increases starting from the 40% range. The

maximum register collisions by function also increases across all functions. Both the

average and maximum register collisions by function seem to have the line pushed

47

to right about where the baseline curve is, for all optimizations off. At the register

collisions by register level, it pushes many register collisions to where the baseline

is except for around the 65% range where the line goes above the baseline. The

maximum register collision is also increased by 2 collisions.

Figure 4.28: Stack On Licm and All-Loops

The change in stack space as a result from spills in the code seems to follow the

pattern of register collisions graph. This can be seen in Figure 4.28. Compared to

licm in Figure 4.18, more functions around the 40-78% range were decreased and

after the 78% mark, the number of collisions increases. The maximum value for stack

space however is reduced from 2175 to 1987 bytes meaning for a few functions using

all-loops with licm helps reduce spills.

When both optimizations are off, the number of average register collisions by

function decreases generally when compared to only having licm off by a couple

registers in the 40-90% range. The maximum value is also decreased by 7.49 collisions.

48

The maximum register collisions by function decrease overall and the maximum value

decreases by 3 registers. The register collisions by registers also decrease very slightly

overall and the maximum value is decreased by also 3 registers.

Figure 4.29: Stack Off, Licm and All-Loops

The stack space for all-loops and licm has a similar trend as the stack space for

only licm caused by spills as seen in Figure 4.29. We see some parts of the stack space,

from the 42-62% range, increase when compared to only licm off and other parts from

78-83% range decrease. We again see the trend of decreased register collisions leading

to a decrease in the stack size. One interesting thing to note is that the maximum

stack value shot up by 844 bytes when turning off all-loops, but the maximum value

for register collisions in the graphs did not change that much to reflect this big change.

This shows that although register collisions may be a way to predict the behavior of

stack space for many functions it may not always be an accurate indicator because

there are many other factors involved such as the live ranges of the registers.

49

4.4.3 Licm and Argpromotion Optimization

To see how an optimization performs without all-loops, we pair licm and arg-

promotion. The graphs can be seen in Appendix C.24 - C.29. When turning both

optimizations on over the baseline, the average register collisions by function seems

to decrease slightly from the 20-90% range and it increases slightly after that. For

maximum register collisions by function, the results stay mostly the same compared

to just turning licm on, but the maximum register collisions shot up from 1460 to

1574. Having argpromotion seems to be deterimental to some functions seen at the

16-collisions line, 0.02% of functions do not make the line anymore, but at the 32-

collisions line, 0.17% more functions make it so it helps other functions. For register

collisions at the register level, the number of collisions slightly increased across all

registers. Having argpromotion on actually causes more spills in the stack space as

seen in Figure 4.30. In the 42-50% function range, the stack space decreases when

compared to only having licm on, but the rest of the function after that percentage

have an increased stack space and the maximum spill space increases from 2175 to

2840 bytes. This agrees with what we see in some of the register collisions trends.

For some functions, the register collisions decreased when compared to just licm and

the rest of the functions increased in register collisions increased and the maximum

register collisions also increase.

When both of the optimizations are off, the average register collisions by function

stay exactly the same except that 0.05% of functions experience an increase in register

collisions slightly. The maximum register collisions by function also stay the same

except that 0.06% of functions experience a decrease in collisions at the 16-collisions

line. The number of register collisions also stay exactly the same except for an increase

in register collisions for 0.01% of registers at the 32-collisions line. The overall stack

space got worse very slightly, as seen in Figure 4.31, by all functions shifting to the

50

Figure 4.30: Stack On, Licm and Argpromotion

Figure 4.31: Stack Off Licm and Argpromotion

51

left when compared to the stack space when just licm is off. This agrees with the

slight increase in register collisions that we see in the graphs. Looking at the assembly

code files, there was not much of a difference in the structure of the code that licm

affected, which means that a small percentage of functions may have just shifted down

to zero, pushing the rest of the functions to the right a little and keeping the same

stack space.

4.5 Thumb Architecture

After looking at how register collisions affect spills in the x86 architecture, we

wanted to see the effects on the ARM architecture. The main reason for this is

because x86 contains add and subtract instructions that can directly access memory

to get the values, so counting the occuring spills may not be accurate. We also wanted

to see how the optimizations may affect the number of collisions and if the spills may

differ due to different instruction set architectures.

We target the Thumb architecture, which is a subset of ARM, and apply the same

process used in the x86 architecture. The general results can be seen in Figure 4.32,

4.33, and 4.34.

4.5.1 All-Loops Optimization

All-loops has a different effect in the ARM architecture when compared to the x86

architecture with respect to the number of collisions that happen. For average register

collisions by function, turning off all-loops causes the number of collisions to actually

increase instead of decrease as seen in Figure 4.35. The average register collisions by

function decreased by 0.6% at the 16-collisions line and by 0.36% at the 32-collisions

line, which is an overall increase in collisions. For maximum register collisions by

function, turning off all-loops has a slight effect of increasing register collisions for

52

Figure 4.32: Thumb Average Register Collisions by Function Statistics

Figure 4.33: Thumb Maximum Register Collisions by Function Statistics

53

Figure 4.34: Thumb Register Collisions by Register Statistics

0.07% for functions at 16-collisions and actually decreases register collisions for 0.24%

of functions at 32-collisions. For register collisions by registers, turning off all-loops

decreases the number of registers that intersect with the 16-collisions mark to 71.47%

and the 32-collisions mark to 86.88% (an overall increase in collisions). Likewise,

if we inspect turning on all-loops, the change is also very little. These changes are

very miniscule which is similar to the changes observed in the x86-64 architectures.

All-loops seems to have more of an impact on the ARM architecture when compared

to x86-64. This shows that optimizations across different instruction sets and ar-

chitectures can vary the amount of spills that it may add to the resulting assembly.

The stack space still follows the trend of register collisions, as seen in Figure 4.36,

where there is an increase in the amount of stack space caused by spills for most func-

tions. This differs from what we see if x86-64 architecture where turning all-loops off

decreased spills for some functions, but also increased spills for other functions.

54

Figure 4.35: ARM Average Register Collisions by Function, All-loops Off

Figure 4.36: ARM Stack Space All-loops Off

55

4.5.2 Jump-threading and Early-cse-memssa Optimization

Early-cse-memssa is an optimization that did not really affect register collisions

on the x86-64 architecture, but deviates from the pattern of other optimizations in

the ARM architecture. When early-cse-memssa is turned off, for the average register

collisions by function, it has the lowest maximum average value when compared to

the other optimizations that are on. This can be seen in Figure 4.37. It also has the

lowest functions that meet the 16-collisions line or the highest register collisions at

83.19%. This was slightly different in the x86 architecture where early-cse-memssa

seemed to fit in more with the trend of the other optimizations.

Jump-threading is another interesting optimization that seemed to keep the trend

across architectures. When turning off jump-threading, it seemed to have one of

the higher maximum average register collisions by function (right under all-loops) as

seen in Figure 4.38. This is similar to x86-64, where jump-threading also has one

of the higher maximum average register collisions by function (right under indvars).

When we turn on jump-threading individually in x86-64, it ended up with the highest

maximum value for the maximum register collisions by function values (1577 register

collisions). This is the same for the ARM architecture where it still ended up being

the highest with 3544 collisions (right under the baseline of 3552 colisions).

These are only a couple of observations with optimizations, but we can see that

there are certain trends that change and trends that stay the same with optimizations

over different architectures. Note, the rest of the graphs for these optimizations on

ARM can be seen in Appendix C.

56

Figure 4.37: ARM Average Register Collisions by Function,
Off Early-CSE-Memssa

4.5.3 Spills Between Architectures

Because Thumb is a 32-bit architecture, the amount of stack space caused by

spills will be very different when compared to x86-64. The amount of stack space

caused by spills in the x86-64 architecture on average is 2028.12 bytes for turning

subject optimizations on and is 2913.82 bytes for turning subject optimizations off.

For Thumb’s stack space average, turning subject optimizations on is 858.59 bytes

and turning subject optimizations off is 875.06 bytes. To get a better sense of how

many spills occur between architectures, we count the number of spills instead of

counting the stack sizes allocated as seen in Figure 4.41 and 4.42.

Generally, ARM has fewer spills than x86-64 across all optimizations. We do

see different trends between architectures, where turning on early-cse-memssa in the

x86-64 architecture causes many spills to occur. For ARM, there is not a significant

57

Figure 4.38: ARM Average Register Collisions by Function,
Off Jump-Threading

difference observed. A big difference between these architectures is that the lowest

spill that occurs for ARM is when all the optimizations are turned on, whereas for x86-

64, it occurs when licm is turned off and the rest of the optimizations are turned on.

This could possibly mean that optimizations that are built for a general case across

many architectures may actually cause more spills for certain architectures and hinder

performance. The spill counts for double optimizations across architectures can be

seen in Appendix D.

58

Figure 4.39: ARM Stack Space Off Early-CSE-Memssa

Figure 4.40: ARM Stack Space Off Jump-Threading

59

Figure 4.41: Number of Spills in the x86 Architecture

Figure 4.42: Number of Spills in the Thumb Architecture

60

Chapter 5

FUTURE WORKS & CONCLUSION

5.1 Future Works

5.1.1 Subject Optimizations

The entire optimization list can be found in the appendix of this paper. A pos-

sible future work would be to consider toggling the more traditional, less optional

optimizations to measure their effects on register collisions and spills. This paper

only looks at what we think may affect pressure the most based on what they do, but

there may be other optimizations that may prove to be interesting after analysis.

5.1.2 Optimization Combinations

Further optimization combinations should be explored. Because there are many

different combinations for turning on and off optimizations and looking at turning on

a number of optimizations and coupling them together, this is left as a possible future

work. It would be interesting to see which optimizations help clean up inefficiencies

that other optimizations expose to make the overall code more efficient.

5.1.3 Register Allocator

This paper uses the llvm basic register allocator for coloring the interference graph.

It would be interesting to take a look at the fast, greedy, and pbqp register allocators

and how register collisions and the interference graph affects the stack space. The

stack space could become smaller by simply using a better allocator. It would also

be interesting to measure the amount of time it takes to find a proper coloring for a

61

graph for each register allocator used.

5.1.4 Timings

Profiling execution time as correlated with different optimizations and register

collisions would provide another metric to compare optimization efficacy. This would

allow one to explore the tradeoffs between spills and transformations.

5.1.5 Architectures

Finally, it would be interesting to see the effects of optimizations across different

architectures. This paper looks at register collisions and stack space between the

Thumb and x86-64 architectures and we get different results for maximum register

collisions per function and register level register collisions. It may be interesting to

see which optimizations work better for different architectures.

5.2 Conclusion

This paper presents a novel approach to analyzing stack space caused by spills by

looking at register collisions. We analyze the effects of various compiler optimizations

on register collisions and try to determine how they may affect the number of spills

in the final resulting assembly code. According to the graphs and the data, there

is some correlation between the number of register collisions and the stack space

created by spills, but there are also many other additional factors to consider such as

the placement and live ranges of the registers. Interesting general information that

we found is that on average 84-86% of functions meet the 16-collisions register mark

and that many spills do occur in code. On average, about 97% of functions meet

the 32-collisions register mark. On the maximum register collision level, about 49-

62

52% of functions meet the 16-collisions register mark and 72-76% of functions meet

the 32-collisions register mark. This means that to prevent spills from happening,

optimizations need to find a balance for which optimizations to use. We also find

that optimizations vary between different architectures and optimizations that may

help for a certain type of architecture may actually be a detriment for another type

of architecture.

63

BIBLIOGRAPHY

[1] Llvm’s analysis and transform passes. http://llvm.org/docs/Passes.html.

Accessed: 2018-05-16.

[2] Standard performance evaluation corporation.

https://www.spec.org/benchmarks.html, 2018.

[3] M. ”Braun, S. Buchwald, S. Hack, R. Leißa, C. Mallon, and A. Zwinkau.

”simple and efficient construction of static single assignment form”. In

R. ”Jhala and K. De Bosschere, editors, ”Compiler Construction”, pages

”102–122”, ”Berlin, Heidelberg”, ”2013”. ”Springer Berlin Heidelberg”.

[4] P. Briggs. Register Allocation via Graph Coloring. PhD thesis, Houston, TX,

USA, 1992. UMI Order No. GAX92-34388.

[5] P. Briggs, K. D. Cooper, K. Kennedy, and L. Torczon. Coloring heuristics for

register allocation. In Proceedings of the ACM SIGPLAN 1989 Conference on

Programming Language Design and Implementation, PLDI ’89, pages 275–284,

New York, NY, USA, 1989. ACM.

[6] G. J. Chaitin. Register allocation & spilling via graph coloring. SIGPLAN

Not., 17(6):98–101, June 1982.

[7] F. Chow and J. Hennessy. Register allocation by priority-based coloring. In

Proceedings of the 1984 SIGPLAN Symposium on Compiler Construction,

SIGPLAN ’84, pages 222–232, New York, NY, USA, 1984. ACM.

[8] Q. Colombet, B. Boissinot, P. Brisk, S. Hack, and F. Rastello. Graph-coloring

and treescan register allocation using repairing. In 2011 Proceedings of the 14th

64

http://llvm.org/docs/Passes.html
https://www.spec.org/benchmarks.html

International Conference on Compilers, Architectures and Synthesis for

Embedded Systems (CASES), pages 45–54, Oct 2011.

[9] K. D. Cooper, A. Dasgupta, and J. Eckhardt. Revisiting graph coloring register

allocation: A study of the chaitin-briggs and callahan-koblenz algorithms. In

Proceedings of the 18th International Conference on Languages and Compilers

for Parallel Computing, LCPC’05, pages 1–16, Berlin, Heidelberg, 2006.

Springer-Verlag.

[10] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck.

Efficiently computing static single assignment form and the control dependence

graph. ACM Trans. Program. Lang. Syst., 13(4):451–490, Oct. 1991.

[11] T. C. d. S. Xavier, G. S. Oliveira, E. D. d. Lima, and A. F. d. Silva. A detailed

analysis of the llvm’s register allocators. In 2012 31st International Conference

of the Chilean Computer Science Society, pages 190–198, Nov 2012.

[12] T. J. Harvey. Reducing the impact of spill code. PhD thesis, Rice University,

1998.

[13] D. Karger, R. Motwani, and M. Sudan. Approximate graph coloring by

semidefinite programming. J. ACM, 45(2):246–265, Mar. 1998.

[14] R. M. ”Karp. ”Reducibility among Combinatorial Problems”, pages ”85–103”.

”Springer US”, ”Boston, MA”, ”1972”.

[15] llvm-admin team. Llvm compiler infrastructure. =http://llvm.org, 2018.

[16] R. Odaira, T. Nakaike, T. Inagaki, H. Komatsu, and T. Nakatani.

Coloring-based coalescing for graph coloring register allocation. In Proceedings

of the 8th Annual IEEE/ACM International Symposium on Code Generation

and Optimization, CGO ’10, pages 160–169, New York, NY, USA, 2010. ACM.

65

=

[17] K. Pingali. Control flow graphs. http:

//www.cs.utexas.edu/~pingali/CS380C/2016-fall/lectures/CFG.pdf.

[18] M. Poletto and V. Sarkar. Linear scan register allocation. ACM Trans.

Program. Lang. Syst., 21(5):895–913, Sept. 1999.

[19] G. Shobaki, M. Shawabkeh, and N. Rmaileh. Preallocation instruction

scheduling with register pressure minimization using a combinatorial

optimization approach. 10, 09 2013.

[20] M. D. Smith, N. Ramsey, and G. Holloway. A generalized algorithm for

graph-coloring register allocation. In Proceedings of the ACM SIGPLAN 2004

Conference on Programming Language Design and Implementation, PLDI ’04,

pages 277–288, New York, NY, USA, 2004. ACM.

[21] L. Torczon and K. Cooper. Engineering A Compiler. Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, 2nd edition, 2011.

66

http://www.cs.utexas.edu/~pingali/CS380C/2016-fall/lectures/CFG.pdf
http://www.cs.utexas.edu/~pingali/CS380C/2016-fall/lectures/CFG.pdf

APPENDICES

Appendix A

-O3 OPTIMIZATION LIST

-assumption-cache-tracker -memoryssa -dse

-loop-distribute -ipsccp -demanded-bits

-lazy-block-freq -aa -lcssa

-profile-summary-info -loop-load-elim -instsimplify

-block-freq -verify -mem2reg

-basicaa -globalopt -scoped-noalias

-mldst-motion -gvn -jump-threading

-tti -basiccg -globaldce

-loop-unswitch -memdep -loop-vectorize

-argpromotion -targetlibinfo -loop-deletion

-forceattrs -opt-remark-emitter -loop-unroll

-correlated-propagation -prune-eh -alignment-from-assumptions

-lcssa-verification -lazy-value-info -branch-prob

-scalar-evolution -licm -memcpyopt

-deadargelim -globals-aa -rpo-functionattrs

-sroa -functionattrs -loop-idiom

-loop-accesses -tbaa -reassociate

-speculative-execution -slp-vectorizer -postdomtree

-inline -elim-avail-extern -early-cse-memssa

-pgo-memop-opt -bdce -adce

-loop-simplify -instcombine -simplifycfg

67

-libcalls-shrinkwrap -sccp -loop-sink

-loops -latesimplifycfg -tailcallelim

-lazy-branch-prob -domtree -loop-rotate

-strip-dead-prototypes -float2int -barrier

-indvars -inferattrs -constmerge

68

Appendix B

ARM DOUBLE OPTIMIZATION NUMBERS

Figure B.1: THUMB Average Register Collisions by Function Statistics

Figure B.2: THUMB Maximum Register Collisions by Function Statistics

Figure B.3: THUMB Register Collisions by Register Statistics

69

Appendix C

REGISTER COLLISION GRAPHS

Figure C.1: x86 Average Register Collisions by Function, Off Licm

70

Figure C.2: x86 Average Register Collisions by Function, On Licm

Figure C.3: x86 Maximum Register Collisions by Function, On Licm

71

Figure C.4: x86 Maximum Register Collisions by Function, Off Licm

Figure C.5: x86 Register Collisions by Register, On Licm

72

Figure C.6: x86 Register Collisions by Register, Off Licm

Figure C.7: x86 Average Register Collisions by Function,
Off Tail Call Elimination

73

Figure C.8: x86 Average Register Collisions by Function,
On Tail Call Elimination

Figure C.9: x86 Maximum Register Collisions by Function,
Off Tail Call Elimination

74

Figure C.10: x86 Maximum Register Collisions by Function,
On Tail Call Elimination

Figure C.11: x86 Register Collisions by Register, Off Tail Call Elimination

75

Figure C.12: x86 Register Collisions by Register, On Tail Call Elimination

Figure C.13: x86 Stack Space, Off Tail Call Elimination

76

Figure C.14: x86 Average Register Collisions by Function, Off
All-Loops and Argpromotion

Figure C.15: x86 Average Register Collisions by Function, On
All-Loops and Argpromotion

77

Figure C.16: x86 Maximum Register Collisions by Function,
Off All-Loops and Argpromotion

Figure C.17: x86 Maximum Register Collisions by Function,
On All-Loops and Argpromotion

78

Figure C.18: x86 Average Register Collisions by Function,
On Licm and All-Loops

Figure C.19: x86 Average Register Collisions by Function,
Off Licm and All-Loops

79

Figure C.20: x86 Maximum Register Collisions by Function,
On Licm and All-Loops

Figure C.21: x86 Maximum Register Collisions by Function,
Off Licm and All-Loops

80

Figure C.22: x86 Register Collisions by Register,
On Licm and All-Loops

Figure C.23: x86 Register Collisions by Register,
Off Licm and All-Loops

81

Figure C.24: x86 Average Register Collisions by Function,
On Licm and Argpromotion

Figure C.25: x86 Average Register Collisions by Function,
Off Licm and Argpromotion

82

Figure C.26: x86 Maximum Register Collisions by Function,
On Licm and Argpromotion

Figure C.27: x86 Maximum Register Collisions by Function,
Off Licm and Argpromotion

83

Figure C.28: x86 Register Collisions by Register,
On Licm and Argpromotion

Figure C.29: x86 Register Collisions by Register,
Off Licm and Argpromotion

84

Figure C.30: ARM Average Register Collisions by Function, On All-Loops

Figure C.31: ARM Maximum Register Collisions by Function, On All-
Loops

85

Figure C.32: ARM Maximum Register Collisions by Function, Off All-
Loops

Figure C.33: ARM Register Collisions by Register, On All-Loops

86

Figure C.34: ARM Register Collisions by Register, Off All-Loops

Figure C.35: ARM Stack Space, On All-Loops

87

Figure C.36: ARM Average Register Collisions by Function,
On Early-CSE-Memssa

Figure C.37: ARM Maximum Register Collisions by Function,
On Early-CSE-Memssa

88

Figure C.38: ARM Maximum Register Collisions by Function,
Off Early-CSE-Memssa

Figure C.39: ARM Register Collisions by Register, On Early-CSE-Memssa

89

Figure C.40: ARM Register Collisions by Register, Off Early-CSE-Memssa

Figure C.41: ARM Stack Space, On Early-CSE-Memssa

90

Figure C.42: ARM Average Register Collisions by Function,
On Jump-Threading

Figure C.43: ARM Maximum Register Collisions by Function,
On Jump-Threading

91

Figure C.44: ARM Maximum Register Collisions by Function,
Off Jump-Threading

Figure C.45: ARM Register Collisions by Register, On Jump-Threading

92

Figure C.46: ARM Register Collisions by Register, Off Jump-Threading

Figure C.47: ARM Stack Space, On Jump-Threading

93

Appendix D

DOUBLE OPTIMIZATIONS SPILL COUNT

Figure D.1: Number of Spills in the x86 Architecture
(Double Optimizations)

Figure D.2: Number of Spills in the ARM Architecture
(Double Optimizations)

94

	LIST OF FIGURES
	Introduction
	Register Collisions
	Optimizations
	Motivation
	Contributions

	Background & Related Works
	Control-Flow Graph
	Live Ranges
	Register Allocation
	Interference Graph
	Graph Coloring

	Related Works
	Heuristics
	Graph Coloring Algorithm

	Setup & Experimental Design
	Clang and LLVM
	Aggregation
	Benchmarks

	Results & Analysis
	Baseline Graph Anaylsis
	Average Register Collisions Across Functions
	Maximum Register Collisions Across Functions
	Register Collisions Across Registers
	Stack Space

	All-Loops Configuration
	All-Loops Optimization On
	All-Loops Optimization Off

	General Observations
	Stack Space On Optimization
	Stack Space Off Optimization

	Double Optimizations
	All-Loops and Argpromotion Optimization
	Licm and All-loops Optimization
	Licm and Argpromotion Optimization

	Thumb Architecture
	All-Loops Optimization
	Jump-threading and Early-cse-memssa Optimization
	Spills Between Architectures

	Future Works & Conclusion
	Future Works
	Subject Optimizations
	Optimization Combinations
	Register Allocator
	Timings
	Architectures

	Conclusion

	BIBLIOGRAPHY
	-O3 Optimization List
	ARM Double Optimization Numbers
	Register Collision Graphs
	Double Optimizations Spill Count

