736,072 research outputs found

    Intersections of the Hermitian surface with irreducible quadrics in PG(3,q2)PG(3,q^2), qq odd

    Get PDF
    In PG(3,q2)PG(3,q^2), with qq odd, we determine the possible intersection sizes of a Hermitian surface H\mathcal{H} and an irreducible quadric Q\mathcal{Q} having the same tangent plane π\pi at a common point PQHP\in{\mathcal Q}\cap{\mathcal H}.Comment: 14 pages; clarified the case q=

    On grounded L-graphs and their relatives

    Get PDF
    We consider the graph class Grounded-L corresponding to graphs that admit an intersection representation by L-shaped curves, where additionally the topmost points of each curve are assumed to belong to a common horizontal line. We prove that Grounded-L graphs admit an equivalent characterisation in terms of vertex ordering with forbidden patterns. We also compare this class to related intersection classes, such as the grounded segment graphs, the monotone L-graphs (a.k.a. max point-tolerance graphs), or the outer-1-string graphs. We give constructions showing that these classes are all distinct and satisfy only trivial or previously known inclusions.Comment: 16 pages, 6 figure

    Intersections of the Hermitian Surface with irreducible Quadrics in even Characteristic

    Get PDF
    We determine the possible intersection sizes of a Hermitian surface H\mathcal H with an irreducible quadric of PG(3,q2){\mathrm PG}(3,q^2) sharing at least a tangent plane at a common non-singular point when qq is even.Comment: 20 pages; extensively revised and corrected version. This paper extends the results of arXiv:1307.8386 to the case q eve

    Disjoint edges in topological graphs and the tangled-thrackle conjecture

    Full text link
    It is shown that for a constant tNt\in \mathbb{N}, every simple topological graph on nn vertices has O(n)O(n) edges if it has no two sets of tt edges such that every edge in one set is disjoint from all edges of the other set (i.e., the complement of the intersection graph of the edges is Kt,tK_{t,t}-free). As an application, we settle the \emph{tangled-thrackle} conjecture formulated by Pach, Radoi\v{c}i\'c, and T\'oth: Every nn-vertex graph drawn in the plane such that every pair of edges have precisely one point in common, where this point is either a common endpoint, a crossing, or a point of tangency, has at most O(n)O(n) edges

    The Knaster-Tarski theorem versus monotone nonexpansive mappings

    Full text link
    Let XX be a partially ordered set with the property that each family of order intervals of the form [a,b],[a,)[a,b],[a,\rightarrow ) with the finite intersection property has a nonempty intersection. We show that every directed subset of XX has a supremum. Then we apply the above result to prove that if XX is a topological space with a partial order \preceq for which the order intervals are compact, F\mathcal{F} a nonempty commutative family of monotone maps from XX into XX and there exists cXc\in X such that cTcc\preceq Tc for every TFT\in \mathcal{F}, then the set of common fixed points of F\mathcal{F} is nonempty and has a maximal element. The result, specialized to the case of Banach spaces gives a general fixed point theorem that drops almost all assumptions from the recent results in this area. An application to the theory of integral equations of Urysohn's type is also given

    Newton Polyhedral Method of Determining p-adic Orders of Zeros Common to Two Polynomials in Qp[x, y]

    Get PDF
    To obtain p-adic orders of zeros common to two polynomials in Q [x,y], the combination of P . Indicator diagrams assodated with both polynomials are examined. It is proved that the p-adic orders of zeros common to both polynomials give the coordinates of certain intersection points of segments of the Indicator diagrams assodated with both polynomials. We make a conjecture that if ( A, IJ. ) is a point of intersection of non-coinddent segments in the combination of Indicator diagrams associated with two polynomials in Q [ x,y l then there exists a zero (L Tl) common to both polynomials such that ord ~. = A , ord Tl::: IJ. . A special case of this conjecture is proved
    corecore