1,285 research outputs found

    Chiral auxiliaries in polymer-supported organic synthesis

    Get PDF
    The use of chiral auxiliaries in polymer-supported organic synthesis is reviewed. In many of the examples presented, not only does the auxiliary serve as an element for inducing asymmetry into the synthesis, but it also functions as the linker for attaching the synthesis substrate to the polymer support. © 2003 Elsevier Ltd. All rights reserved.postprin

    Iridium-Catalyzed, β-Selective C(sp3)-H Silylation of Aliphatic Amines To Form Silapyrrolidines and 1,2-Amino Alcohols.

    Get PDF
    The functionalization of unactivated C(sp3)-H bonds of aliphatic amines catalyzed by transition-metal complexes is important because amine-based functionality is present in a majority of biologically active molecules and commercial pharmaceuticals. However, such reactions are underdeveloped and challenging to achieve in general because the basicity and reducing properties of alkylamines tends to interfere with potential reagents and catalysts. The functionalization of C-H bonds β to the nitrogen of aliphatic amines to form prevalent 1,2-amino functionalized structures is particularly challenging because the C-H bond β to nitrogen is stronger than the C-H bond α to nitrogen, and the nitrogen in the amine or its derivatives usually directs a catalyst to react at more distal γ- and δ-C-H bonds to form 5- or 6-membered metallacyclic intermediate. The enantioselective functionalization of a C-H bond at any position in amines also has been vexing and is currently limited to reactions of specific, sterically hindered, cyclic structures. We report iridium-catalyzed, β-selective silylations of unactivated C(sp3)-H bonds of aliphatic amines to form silapyrrolidines that are both silicon-containing analogs of common saturated nitrogen heterocycles and precursors to 1,2-amino alcohols by Tamao-Fleming oxidation. These silylations of amines are accomplished by introducing a simple methylene linker between the heteroatom and silicon that has not been used previously for the silylation of C-H bonds. The reactions occur with high enantioselectivity when catalyzed by complexes of new chiral, pyridyl imidazoline ligands, and the rates of reactions with catalysts of these highly basic ligands are particularly fast, occuring in some cases at or even below room temperature

    Synthesis and Biological Evaluation (in Vitro and in Vivo) of Cyclic RGD Peptidomimetic - Paclitaxel Conjugates Targeting Integrin alphaVbeta3

    Get PDF
    A small library of integrin ligand - Paclitaxel conjugates 10-13 was synthesized with the aim of using the tumor-homing cyclo[DKP-RGD] peptidomimetics for site-directed delivery of the cytotoxic drug. All the Paclitaxel-RGD constructs 10-13 inhibited biotinylated vitronectin binding to the purified alphaVbeta3 integrin receptor at low nanomolar concentration and showed in vitro cytotoxic activity against a panel of human tumor cell lines similar to that of Paclitaxel. Among the cell lines, the cisplatin-resistant IGROV-1/Pt1 cells expressed high levels of integrin alphaVbeta3, making them attractive to be tested in in vivo models. Cyclo[DKP-f3-RGD]-PTX 11 displayed sufficient stability in physiological solution and in both human and murine plasma to be a good candidate for in vivo testing. In tumor-targeting experiments against the IGROV-1/Pt1 human ovarian carcinoma xenotransplanted in nude mice, compound 11 exhibited a superior activity than Paclitaxel, despite the lower (ca. half) molar dosage used

    Peptides in Receptor-Mediated Radiotherapy: From Design to the Clinical Application in Cancers

    Get PDF
    Short peptides can show high affinity for specific receptors overexpressed on tumor cells. Some of these are already used in cancerology as diagnostic tools and others are in clinical trials for therapeutic applications. Therefore, peptides exhibit great potential as a diagnostic tool but also as an alternative or an additional antitumoral approach upon the covalent attachment of a therapeutic moiety such as a radionuclide or a cytotoxic drug. The chemistry offers flexibility to graft onto the targeting-peptide either fluorine or iodine directly, or metallic radionuclides through appropriate chelating agent. Since short peptides are straightforward to synthesize, there is an opportunity to further improve existing peptides or to design new ones for clinical applications. However, several considerations have to be taken into account to optimize the recognition properties of the targeting-peptide to its receptor, to improve its stability in the biological fluids and its residence in the body, or to increase its overall therapeutic effect. In this review, we highlight the different aspects which need to be considered for the development of an efficient peptide receptor-mediated radionuclide therapy in different neoplasms

    Screening and Optimizing Antimicrobial Peptides by Using SPOT-Synthesis.

    Get PDF
    Peptide arrays on cellulose are a powerful tool to investigate peptide interactions with a number of different molecules, for examples antibodies, receptors or enzymes. Such peptide arrays can also be used to study interactions with whole cells. In this review, we focus on the interaction of small antimicrobial peptides with bacteria. Antimicrobial peptides (AMPs) can kill multidrug-resistant (MDR) human pathogenic bacteria and therefore could be next generation antibiotics targeting MDR bacteria. We describe the screen and the result of different optimization strategies of peptides cleaved from the membrane. In addition, screening of antibacterial activity of peptides that are tethered to the surface is discussed. Surface-active peptides can be used to protect surfaces from bacterial infections, for example implants

    Native protein hydrogels by dynamic boronic acid chemistry

    No full text

    GlyPro as a self-immolative spacer for the release of payloads from antibody-drug conjugates

    Get PDF
    Antibody-drug conjugates (ADCs) are an increasingly popular modality for targeted drug delivery in many oncological and immunological applications. The paratope of a monoclonal antibody (mAb) directs the delivery of a conjugated therapeutic payload to antigen expressing cells, resulting in a controlled transport of payload to a desired cell type. Internalization of the ADC followed by lysosomal degradation results in the release of a payload to perform its biochemical function. A chemical linker between the drug and the antibody is responsible for the stability of the conjugate in circulation alongside mediating the release of an unmodified payload under lysosomal conditions. Currently, the lead linker, ValCit-p-aminobenzyl carbamate (PABC), has demonstrated impressive extracellular integrity while maintaining susceptibility to lysosomal proteases, such as Cathepsin B, for controlled intracellular release.1 However, the well-studied ValCitPABC linker system is largely restricted to amine-containing payloads for immuno-modulating ADCs whereas there are few ADC linkage systems that are able to release alcohol containing payloads, regardless of their functional prevalence across a myriad of biologically active small molecules. We propose that upon cathepsin-mediated cleavage of our ADCs, the ValCit release of a GlyPro ester undergoes rapid cyclization to form a diketopiperazine, thereby releasing the alcohol-containing payload. The efficiency of this linker (ValCitGlyPro) was examined using a model system designed to release dexamethasone, a potent glucocorticoid. Kinetic studies demonstrated that our linker system results in rapid GlyPro-dexamethasone release in lysosomes, which undergoes rapid cyclization to release dexamethasone at neutral pH. After conjugation of the linker payload to targeted and untargeted antibodies, several cell assays show that this system is capable of targeted immune suppression of lipopolysaccharide (LPS) stimulated cells. We also report our efforts to expand the utility of this linker system for the release of anilines, and amines

    Translocation of Non-Canonical Polypeptides into Cells Using Protective Antigen

    Get PDF
    A variety of pathogenic bacteria infect host eukaryotic cells using protein toxins, which enter the cytosol and exert their cytotoxic effects. Anthrax lethal toxin, for example, utilizes the membrane-spanning translocase, protective antigen (PA) pore, to deliver the protein toxin lethal factor (LF) from the endosome into the cytosol of cells. Previous work has investigated the delivery of natural peptides and enzymatic domains appended to the C-terminus of the PA-binding domain of lethal factor (LF[subscript N]) into the cytosol via PA pore. Here, we move beyond natural amino acids and systematically investigate the translocation of polypeptide cargo containing non-canonical amino acids and functionalities through PA pore. Our results indicate translocation is not perturbed with alterations to the peptide backbone or side-chain. Moreover, despite their structural complexity, we found that the small molecule drugs, doxorubicin and monomethyl auristatin F (MMAF) translocated efficiently through PA pore. However, we found cyclic peptides and the small molecule drug docetaxel abrogated translocation due to their large size and structural rigidity. For cargos that reached the cytosol, we demonstrated that each remained intact after translocation. These studies show PA is capable of translocating non-canonical cargo provided it is in a conformational state conducive for passage through the narrow pore.MIT Start-up FundsMassachusetts Institute of Technology. Charles E. Reed Faculty Initiative FundDamon Runyon Cancer Research Foundation (Innovation Award)National Science Foundation (U.S.) (CAREER Award CHE-1351807)National Science Foundation (U.S.). Graduate Research Fellowshi
    corecore