Article

Synthesis and Biological Evaluation (in Vitro and in Vivo) of Cyclic RGD Peptidomimetic - Paclitaxel Conjugates Targeting Integrin \#\#

Raffaele Colombo, Michele Mingozzi, Laura Belvisi, Daniela Arosio, Umberto
Piarulli, Nives Carenini, Paola Perego, Nadia Zaffaroni, Michelandrea
De Cesare, Vittoria Castiglioni, Eugenio Scanziani, and Cesare Gennari

J. Med. Chem., Just Accepted Manuscript • Publication Date (Web): 09 Nov 2012

Downloaded from http://pubs.acs.org on November 9, 2012

Just Accepted

Abstract

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

[^0]
Synthesis and Biological Evaluation (in Vitro and in

 Vivo) of Cyclic RGD Peptidomimetic - Paclitaxel Conjugates Targeting Integrin $\alpha_{V} \beta_{3}$Raffaele Colombo, ${ }^{\dagger}$ Michele Mingozzi, ${ }^{\dagger}$ Laura Belvisi, ${ }^{\dagger}$ Daniela Arosio, ${ }^{\neq}$Umberto Piarulli, *\&
Nives Carenini, ${ }^{\perp}$ Paola Perego, ${ }^{\perp}$ Nadia Zaffaroni, ${ }^{\perp}$ Michelandrea De Cesare, ${ }^{\perp}$ Vittoria Castiglioni, ${ }^{\|}$Eugenio Scanziani, ${ }^{\|}$Cesare Gennari* ${ }^{*}$
${ }^{\dagger}$ Università degli Studi di Milano, Dipartimento di Chimica, via Golgi 19, I-20133, Milan, Italy
${ }^{\ddagger}$ CNR, Istituto di Scienze e Tecnologie Molecolari (ISTM), via Golgi 19, I-20133, Milan, Italy
${ }^{\S}$ Università degli Studi dell'Insubria, Dipartimento di Scienza e Alta Tecnologia, via Valleggio
11, I-22100, Como, Italy
${ }^{\perp}$ Molecular Pharmacology Unit, Dept. Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale Tumori, via Amadeo 42, I-20133 Milan, Italy
${ }^{\|}$Università degli Studi di Milano, Dipartimento di Scienze Veterinarie e Sanità Pubblica, via Celoria 10, I-20133 Milan, Italy

Abstract

A small library of integrin ligand - Paclitaxel conjugates $\mathbf{1 0 - 1 3}$ was synthesized with the aim of using the tumor-homing cyclo[DKP-RGD] peptidomimetics for site-directed delivery of the cytotoxic drug. All the Paclitaxel-RGD constructs 10-13 inhibited biotinylated vitronectin binding to the purified $\alpha_{V} \beta_{3}$ integrin receptor at low nanomolar concentration and showed in vitro cytotoxic activity against a panel of human tumor cell lines similar to that of Paclitaxel. Among the cell lines, the cisplatin-resistant IGROV-1/Pt1 cells expressed high levels of integrin $\alpha_{v} \beta_{3}$, making them attractive to be tested in in vivo models. Cyclo[DKP-f3-RGD]PTX 11 displayed sufficient stability in physiological solution and in both human and murine plasma to be a good candidate for in vivo testing. In tumor-targeting experiments against the IGROV-1/Pt1 human ovarian carcinoma xenotransplanted in nude mice, compound $\mathbf{1 1}$ exhibited a superior activity than Paclitaxel, despite the lower (ca. half) molar dosage used.

INTRODUCTION

Chemotherapy has been one of the main approaches for the treatment of cancer for more than half a century and is based on the administration of drugs which often interfere with fundamental cellular functions (e.g., DNA replication, cell division). The antitumor efficacy of anticancer drugs is thus limited by their nonspecific toxicity to normal cells, especially to rapidly growing cells such as blood, bone marrow and mucous membrane cells, resulting in a low therapeutic index and serious side-effects. The efficacy of chemotherapy is further limited by the occurrence or development of drug resistance: tumor cells can be regarded as a rapidly changing target because of their genetic instability, heterogeneity, and high rate of mutation, leading to selection and overgrowth of a drug-resistant tumor cell population. ${ }^{1}$ In principle, the efficiency of the treatment can be improved by increasing the doses, but this approach commonly results in severe toxicity. Therefore, selective tumor targeting of chemotherapeutic agents represents a major goal,
and various drug delivery systems have been recently developed, ${ }^{2}$ including the use of liposomes, microspheres, micelles, polymers, protein- or antibody-drug conjugates, and prodrugs. ${ }^{3}$ Considerable efforts are currently being made in this domain to such an extent that leaders of major pharmaceutical companies foresee that $>60 \%$ of all existing drugs will be targeted in less than two decades. ${ }^{4}$ In this field, an attractive avenue for selective tumor targeting are hybrid molecules designed to bind to specific over-expressed receptors on cancer cells. ${ }^{5}$ Clearly, the success of this approach is heavily dependent on the rational selection of appropriate biological objectives.

Integrins are ideal pharmacological targets based on their key role in angiogenesis and tumor development and on their easy accessibility as cell surface receptors interacting with extracellular ligands. ${ }^{6}$ They are bidirectional glycoprotein heterodimeric receptors which connect cells to the scaffolding proteins of the extracellular matrix, occurring in at least 24 pairs of 18α and 8β subunits and containing large extracellular domains and short cytoplasmic domains. ${ }^{7}$ Integrins are also involved in tissue integrity and cell trafficking, growth, differentiation, proliferation and migration. ${ }^{8}$ As a consequence of their role in so many fundamental processes, integrin malfunction is connected to a large variety of diseases such as thrombosis, osteoporosis, inflammation, and cancer. ${ }^{9}$ The tripeptide sequence arginine-glycine-aspartate (RGD) has been identified as the common motif used by several endogenous ligands to recognize and bind a group of integrins, including $\alpha_{V} \beta_{3}, \alpha_{V} \beta_{5}, \alpha_{5} \beta_{1}$, which are crucial in angiogenesis, tumor progression and metastasis, and $\alpha_{\text {IIb }} \beta_{3}$, which is involved in platelet aggregation. ${ }^{10}$

A potent $\alpha_{V} \beta_{3}$ integrin ligand, cyclo[Arg-Gly-Asp-D-Phe-N(Me)-Val] (Cilengitide) developed by Kessler and co-workers (Figure 1), ${ }^{11,12}$ is currently in phase III clinical trials as an angiogenesis inhibitor for patients with glioblastoma multiforme. ${ }^{13}$ The high activity and
selectivity of this derivative has been attributed to an extended conformation of the RGD motif displaying a distance of about $9 \AA$ between the C_{β} atoms of Asp and Arg. ${ }^{12,14}$ These observations prompted many other research groups to investigate the use of conformationally constrained cyclic RGD peptidomimetics as active and selective integrin antagonists. A selection of these ligands, encompassing a wide variety of rigid scaffolds and featuring 13-, 14-, 15- and 16membered rings, is shown in Figure 1. ${ }^{15}$

Figure 1. Potent $\alpha_{v} \beta_{3}$ integrin ligands

Sewald
and co-workers Casiraghi
and co-workers

 Scolastico and co-workers

We have recently contributed to this field with a new class of cyclic RGD-peptidomimetics, containing bifunctional diketopiperazine (DKP) scaffolds and featuring 17-membered rings (Figure 2). ${ }^{16}$ The cis-derivative cyclo[DKP-1-RGD] (1) inhibited biotinylated vitronectin binding to the purified $\alpha_{v} \beta_{3}$ receptor at a micromolar concentration (3.9 $\pm 0.4 \mu \mathrm{M}$), while transderivatives 2-7 ranged from submicro- to subnanomolar concentrations (220-0.2nM).

Figure 2. Library of cyclo[DKP-RGD] integrin ligands
 $1=$ cyclo[DKP-1-RGD] $=3 S, 6 S, \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Bn}$ $2=$ cyclo[DKP-2-RGD] $=3 R, 6 S, R^{1}=H, R^{2}=B n$ 3 = cyc/o[DKP-3-RGD] $=3 S, 6 R, \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Bn}$ $4=$ cyclo[$[\mathrm{DKP}-4-\mathrm{RGD}]=3 R, 6 S, \mathrm{R}^{1}=\mathrm{Bn}, \mathrm{R}^{2}=\mathrm{H}$ $5=$ cyclo[DKP-5-RGD] $=3 R, 6 S, R^{1}=\mathrm{Bn}, \mathrm{R}^{2}=\mathrm{Bn}$ $6=$ cyclo[DKP-6-RGD] $=3 S, 6 R, R^{1}=\mathrm{Bn}, \mathrm{R}^{2}=\mathrm{H}$ $7 \mathrm{a}=$ cyclo[DKP-7-RGD] $]^{a}=3 S, 6 R, R^{1}=\mathrm{Bn}, \mathrm{R}^{2}=\mathrm{Bn}$ $7 \mathrm{~b}=$ cyc/o[DKP-7-RGD] ${ }^{a}=3 S, 6 R, R^{1}=\mathrm{Bn}, \mathrm{R}^{2}=\mathrm{Bn}$
${ }^{a} N$-dibenzyl cyclo[DKP-7-RGD] was isolated as two different separable conformers (diastereomers, 7a and 7b) due to hindered rotation of one ring around the other, i.e., the DKP N benzyl group cannot pass inside the macrolactam ring, see ref. 16 b.

It is now emerging that antiangiogenic therapy alone is not sufficient to fight and eradicate tumors: recent preclinical findings of a paradoxical pro-angiogenic activity of RGD-mimetic agents (like Cilengitide) at low concentrations have stimulated the debate on the use of antiangiogenetics as single drugs. ${ }^{17}$ Since α_{V} integrins, which can be internalized by cells, are involved in tumor angiogenesis and are overexpressed on the surface of cancer cells, integrin ligands can be usefully employed as tumor-homing peptidomimetics for site-directed delivery of cytotoxic drugs. ${ }^{18}$ During the past fifteen years, a number of RGD-cytotoxic drug conjugates have been developed. In these approaches, a few cyclic RGD integrin ligands (e.g., RGD4C, ${ }^{19}$ cyclo $[(\mathrm{NMe})$ VRGDf-NH $],{ }^{20}$ cyclo $[\mathrm{RGDfK}],{ }^{21,22}$ cyclo[CRGDC], ${ }^{22} \quad$ cyclo[RGDf-Aad],${ }^{23 \mathrm{a}}$ cyclo [RGDf-Amp] ${ }^{23 a}$) were conjugated to a cytotoxic drug (e.g., doxorubicin, ${ }^{19,21}$ doxsaliform, ${ }^{20}$ camptothecin, ${ }^{23 \mathrm{a}, \mathrm{b}}$ cisplatin ${ }^{22}$) through different linkers, such as amides, ${ }^{19,22,23 \mathrm{a}}$ oximes, ${ }^{20,23 \mathrm{a}}$ maleimides, ${ }^{21}$ carbamates, ${ }^{23 \mathrm{~b}}$ and idrazones. ${ }^{23 \mathrm{a}}$ Notably, Chen and co-workers prepared the RGD ligand - Paclitaxel conjugate 8 (Figure 3), which was covalently assembled by joining the
microtubule-stabilizing anticancer agent to the dimeric RGD peptide $\mathrm{E}[\operatorname{cyclo}(\mathrm{RGDyK})]_{2}$ via a cleavable succinyl ester linker, and evaluated its antitumor activity on the metastatic breast cancer cell line MDA-MB-435. ${ }^{24}$ In mice, conjugate $\mathbf{8}$ showed a moderately improved antitumor effect over Paclitaxel, but no tumor regression could be observed. The stability of the succinyl linker was not assessed and a premature release of Paclitaxel can be suspected.

Figure 3. Dimeric RGD ligand - Paclitaxel conjugates

A very similar conjugate (i.e., compound 9 reported in Figure 3) was extensively evaluated in a recent study by Ryppa and co-workers on an ovarian carcinoma xenograft model (OVCAR3). ${ }^{25}$ Although the construct provided promising results in vitro, unfortunately it did not show any antitumor effect in vivo. The stability of conjugate $\mathbf{9}$ in a glucose phosphate buffer solution at $\mathrm{pH}=7$ was studied over 24 h , yielding a half-life of only $\sim 2 \mathrm{~h}$ at $37^{\circ} \mathrm{C}$. Half-life in the bloodstream is expected to be much shorter, and the inefficacy of this conjugate was attributed to
hydrolysis of the ester bond at the 2^{\prime} position of Paclitaxel, which causes premature release of the cytotoxic agent and loss of the tumor-homing effect.

Herein, we present a full account of our investigations reporting: (i) the synthesis of new cyclo[DKP-RGD] integrin ligands, bearing a free amine group suitable for conjugation to a cytotoxic drug; (ii) the conjugation of these ligands to Paclitaxel via a succinyl linker to give cyclo[DKP-RGD] - Paclitaxel conjugates 10-13 (Figure 4); (iii) the stability of a cyclo[DKPRGD] - Paclitaxel construct in a physiological solution and in both human and murine plasma, which turned out to be far better than the case reported above; ${ }^{25}$ (iv) the ability of the cyclo[DKP-RGD] - Paclitaxel conjugates to compete with biotinylated vitronectin for binding to the purified $\alpha_{\vee} \beta_{3}$ and $\alpha_{v} \beta_{5}$ receptors; (v) in vitro cytotoxic activity of the cyclo[DKP-RGD] Paclitaxel conjugates in a panel of human cancer cell lines; (vi) in vivo tumor-targeting efficacy against the IGROV-1/Pt1 human ovarian carcinoma xenotransplanted in nude mice; (vii) the effects of tumor treatment, analyzed using immunohistochemistry.

Figure 4. Structure of cyclo[DKP-RGD] - Paclitaxel conjugates 10-13

$10=$ cyclo[DKP-f2-RGD]-PTX

12 = cyclo[DKP-f4-RGD]-PTX

11 = cyclo[DKP-f3-RGD]-PTX

RESULTS AND DISCUSSION

Synthesis. In order to prepare cyclic RGD-peptidomimetics covalently linked to Paclitaxel (compounds 10-13, Figure 4), four functionalized (f) trans diketopiperazines (i.e., DKP-f2, DKP$f 3$, DKP-f4, DKP-f6) were synthesized, varying the position of the p-aminomethylbenzyl N substituent ($N-1$ or $N-4$) and the absolute stereochemistry at C-3 and C-6 (Schemes 1-3). These DKPs were used for the synthesis of cyclo[DKP-RGD] integrin ligands (Scheme 4), which were conjugated to 2'-succinyl Paclitaxel (Scheme 5).

For the preparation of the functionalized trans diketopiperazines DKP- $f 2$, DKP- $f 3$, DKP- $f 4$, and DKP- $f 6$, we selected a linker bearing both an aldehyde (for successive reductive alkylation)
and an amino group (for the final conjugation to Paclitaxel). Thus, linker 14 was synthesized in three steps from 4-aminomethyl benzoic acid via LiAlH_{4} reduction, primary amine protection as 4-methoxy-2,3,6-trimethylbenzenesulphonamide (Mtr) and benzylic alcohol oxidation using activated MnO_{2} (Scheme 1). The Mtr protecting group was chosen because of its stability and orthogonality with the methyl, benzyl, allyl, $t \mathrm{Bu}, \mathrm{Boc}$, and Cbz protecting groups.

Scheme 1. Synthesis of aldehyde 14^{a}

${ }^{a}$ Reagents and conditions: (a) LiAlH_{4}, THF, 8 h , reflux, 70%; (b) Mtr-Cl, $i-\mathrm{Pr}_{2} \mathrm{NEt}$, THF, 6 h , room temp., 85%; (c) MnO_{2}, THF, overnight, room temp., quant..

Trans scaffolds DKP- $f 2$, DKP- $f 3$ (Scheme 2) and DKP- $f 4$, DKP- $f 6$ (Scheme 3) were synthesized starting from commercially available (R) - or (S)-aspartic acid and (R) - or (S)-serine. Two different synthetic strategies were developed depending on the nitrogen substitution. In particular, the synthesis of DKP- $f 2$ and DKP- $f 3$ (bearing the linker on DKP nitrogen $N-4$, former serine nitrogen) was realized making use of a serine ligation strategy, ${ }^{26}$ as described in Scheme 2. (R)- and (S)-Aspartic acid were initially protected as allyl ester on the side chain and as N-Boc to give the enantiomeric derivatives $(S) \mathbf{- 1 5}$ and $(R)-\mathbf{1 6} .(R)$ - and (S)-Serine were protected as methyl ester and reductively alkylated with aldehyde $\mathbf{1 4}$ and sodium triacetoxyborohydride to afford the enantiomeric compounds $(R) \mathbf{- 1 7}$ and (S) - $\mathbf{1 8}$. Direct coupling (HATU, $i \operatorname{Pr}_{2} \mathrm{NEt}$) of protected aspartic acid $(S) \mathbf{- 1 5}$ with functionalized serine $(R) \mathbf{- 1 7}$, or of the enantiomers $(R)-\mathbf{1 6}$ with $(S) \mathbf{- 1 8}$, led to the isopeptides $(S, R) \mathbf{- 1 9}$ and $(R, S)-\mathbf{2 0}$ in high yield (86%), rather than forming the expected dipeptides. The O, N-acyl migration ${ }^{26}$ was then triggered by cleavage of the Boc protecting group and treatment with a base $\left(i \mathrm{Pr}_{2} \mathrm{NEt}\right)$ in a protic solvent $(i \mathrm{PrOH})$, which also
promoted the simultaneous cyclization to the trans diketopiperazines 21 and 22 (93% overall yield). The hydroxyl group of $\mathbf{2 1}$ and $\mathbf{2 2}$ was converted into azides $\mathbf{2 3}$ and $\mathbf{2 4}$ via a Mitsunobu reaction in good yield (86%), using $\mathrm{HN}_{3} \cdot \mathrm{Tol}$ in a toluene / dichloromethane solution. Finally, a one-pot Staudinger reduction - Boc protection, followed by allyl deprotection yielded the trans scaffolds DKP- $f 2(\mathbf{2 7} ; 3 R, 6 S)$ and DKP- $f 3(\mathbf{2 8} ; 3 S, 6 R)$ in 88% yield. This synthetic route involves a high overall yield (60\%) and only a few chromatographic purifications, which allows easy preparation on a multi-gram scale.

Scheme 2. Synthesis of DKP-f 2 and DKP- $f 3^{a, b}$

${ }^{a}$ Reagents and conditions: (a) allyl alcohol, AcCl ; (b) $\mathrm{Boc}_{2} \mathrm{O}$, TEA, Dioxane, water, 95% over two steps; (c) $\mathrm{MeOH}, \mathrm{AcCl}$, quant.; (d) aldehyde 14, $\mathrm{NaBH}(\mathrm{OAc})_{3}$, THF, 3 h , room temp., quant.; (e) HATU, HOAT, $i \mathrm{Pr}_{2} \mathrm{NEt}$, DMF, $3 \mathrm{~h}, 0{ }^{\circ} \mathrm{C}$ to room temp., 86%; (f) TFA/DCM 1:2, 3 h , $0{ }^{\circ} \mathrm{C}$ to room temp.; (g) $i \mathrm{Pr}_{2} \mathrm{NEt}, i \mathrm{PrOH}, 6 \mathrm{~h}$, room temp., 93% over two steps; (h) $\mathrm{HN}_{3} \cdot \mathrm{Tol}$, DIAD, $\mathrm{Ph}_{3} \mathrm{P}, \mathrm{DCM} / \mathrm{Tol} 1: 2,7 \mathrm{~h},-20^{\circ} \mathrm{C}, 86 \%$; (i) $\mathrm{Me}_{3} \mathrm{P}, \mathrm{BOC}-\mathrm{ON}, \mathrm{THF}, 6 \mathrm{~h},-20^{\circ} \mathrm{C}$ to room temp., 88%; (j) pyrrolidine, $\mathrm{PPh}_{3},\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right], \mathrm{DCM}, 4 \mathrm{~h}$, room temp., quant.. ${ }^{b}$ Yields reported are the average of six experiments, including different reaction batches with the two enantiomeric products.

For the synthesis of trans scaffolds DKP- $f 4$ and DKP-f6 (Scheme 3), (R)- and (S)-aspartic acid were protected as dimethyl ester and reductively alkylated with aldehyde $\mathbf{1 4}$ to obtain the enantiomeric derivatives (S)-29 and (R)-30. The hydroxyl group of (R) - or (S)-Boc-Ser-OMe was
first transformed into the corresponding azide under Mitsunobu conditions in 78% yield and then the methyl ester was saponified. The resulting enantiomeric acids (R) - $\mathbf{3 1}$ and (S)-32, stable only for a few hours, were immediately self-condensed with DCC in DCM to give the symmetric anhydrides $(R, R) \mathbf{- 3 3}$ and $(S, S) \mathbf{- 3 4}$, which were isolated by filtering off the N, N^{\prime}-dicyclohexylurea (DCU) and immediately reacted with the functionalized aspartic acid dimethylester $(S) \mathbf{- 2 9}$ or (R) 30 to obtain the enantiomeric dipeptides $(S, R)-\mathbf{3 5}$ and (R, S) - $\mathbf{3 6}$ in moderate yield (40\%). Yield optimization was pursued by extensively varying the reaction conditions (equivalents, solvents, temperature, time) but all the attempts were not successful, and markedly differed from the analogous reaction run on N -benzyl-aspartic acid dimethylester (i.e. 29 or $\mathbf{3 0}$ missing the Mtr -$\mathrm{NH}-\mathrm{CH}_{2}$ - side chain) where the yield was uniformly higher (80%). ${ }^{16 \mathrm{~b}}$ All other coupling reagents tested (HATU, PyBrOP, DPPA, etc.) were ineffective for this reaction; although no coupling product of the dehydroalanine derivative was ever detected, the beta-elimination possibly caused by excess $i \mathrm{Pr}_{2} \mathrm{NEt}$ in the HATU, PyBrOP and DPPA tentative couplings might be an additional reason for this failure, combined with the poor reactivity of the sterically hindered secondary amine of the aspartic derivative.

After Boc deprotection, the six-membered cyclization occurred spontaneously with 4 equiv of $i \mathrm{Pr}_{2} \mathrm{NEt}$ in $i \mathrm{PrOH}$, to give diketopiperazines $(3 R, 6 S) \mathbf{- 3 7}$ and $(3 S, 6 R)-\mathbf{3 8}$ in 92% yield. Trans scaffolds DKP-f4 (41; $3 R, 6 S$) and DKP-f6 (42; $3 S, 6 R$) were finally obtained by catalytic hydrogenation of the azide, Boc protection of the primary amine and hydrolysis of the methyl ester (96% overall yield).

Scheme 3. Synthesis of DKP-f4 and DKP- $f 6^{a, b}$

${ }^{a}$ Reagents and conditions: (a) $\mathrm{MeOH}, \mathrm{AcCl}$, quant.; (b) aldehyde 14, $\mathrm{NaBH}_{3}(\mathrm{CN}), \mathrm{MeOH}, 4 \mathrm{~h}$, room temp., 66%; (c) $\mathrm{Boc}_{2} \mathrm{O}$, TEA, dioxane-water, 95%; (d) HN_{3} Tol, DIAD, $\mathrm{Ph}_{3} \mathrm{P}$, THF, $7 \mathrm{~h},-$ $20^{\circ} \mathrm{C}, 78 \%$; (e) LiOH, $\mathrm{H}_{2} \mathrm{O} / \mathrm{THF} 1: 1,1 \mathrm{~h}, 0^{\circ} \mathrm{C}$, quant.; (f) DCC, DCM, 1 h , room temp., quant.; (g) DCM, overnight, room temp., 40%; (h) TFA, $\mathrm{Et}_{3} \mathrm{SiH}$, DCM, 3 h, room temp., quant.; (i) $i \mathrm{Pr}_{2} \mathrm{NEt}, i \mathrm{PrOH}, 6 \mathrm{~h}$, room temp., 92%; (j) $\mathrm{H}_{2}, 10 \% \mathrm{Pd} / \mathrm{C}$, THF, 4 h , room temp., quant.; (k) $\mathrm{Boc}_{2} \mathrm{O}, i \mathrm{Pr}_{2} \mathrm{NEt}, \mathrm{DCM}, 6 \mathrm{~h}$, room temp., 96%. ${ }^{b}$ Yields reported are the average of six experiments, including different reaction batches with the two enantiomeric products.

Trans diketopiperazines DKP- $f 2$, DKP- $f 3$, DKP-f4 and DKP-f6 were used as scaffolds for the synthesis of functionalized cyclo[DKP-RGD] integrin ligands 63-66, following a solution-phase strategy (Scheme 4). Dipeptide Boc-Arg(Mtr)-Gly-OBn, prepared on a multigram scale following our reported procedure, ${ }^{16 \mathrm{~b}}$ was Boc-deprotected and coupled to the chosen diketopiperazine scaffold to give compounds 43-46 in good yields (83-85\%). The Boc protecting group of compounds 43-46 was then removed and the resulting free amines 47-50 were coupled to $\mathrm{Cbz}-\mathrm{Asp}(\mathrm{O} t \mathrm{Bu})-\mathrm{OH}$ to obtain the linear $\mathrm{Cbz}-\mathrm{Asp}(\mathrm{OtBu})-\mathrm{DKP}-\mathrm{Arg}(\mathrm{Mtr})-\mathrm{Gly}-\mathrm{OBn}$ peptidomimetics $\mathbf{5 1 - 5 4}$ in high yields (86-88\%). After carboxybenzyl and benzyl groups simultaneous deprotection by catalytic hydrogenolysis to give $\mathbf{5 5 - 5 8}$ quantitatively, the synthesis
of protected cyclo(DKP-RGD) 59-62 was accomplished in good yield (60-81\%) by 17membered macrolactamization in a highly diluted DMF solution (1.4 mM) utilizing HATU, HAOT, $i-\operatorname{Pr}_{2} \mathrm{NEt}$ (4:4:6 equiv). The final step was the non trivial removal of the side chain protecting groups.

Scheme 4. Synthesis of functionalized cyclo[DKP-RGD] integrin ligands 63-66 ${ }^{a}$

${ }^{a}$ Reagents and conditions: (a) HATU, HOAT, $i \mathrm{Pr}_{2} \mathrm{NEt}$, DMF, overnight, room temp., 83-85\%; (b) TFA/DCM 1:2, 3 h, room temp., quant.; (c) Cbz-Asp(OtBu)-OH, HATU, HOAT, $i \mathrm{Pr}_{2} \mathrm{NEt}$, DMF, overnight, room temp., $86-88 \%$; (d) $\mathrm{H}_{2}, 10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{THF} / \mathrm{H}_{2} \mathrm{O} 1: 1$, overnight, room temp., quant.; (e) HATU, HOAT, $i \mathrm{Pr}_{2} \mathrm{NEt}, 1.4 \mathrm{mM}$ in DMF, overnight, room temp., $60-81 \%$; (f) TFA/TMSBr/thioanisol/EDT/phenol 70:14:10:5:1, 2 h , room temp., 70-85\%.

The $\mathrm{O} t \mathrm{Bu}$ and the Mtr on the arginine were easily deprotected while the Mtr on the benzylic amine was very stable. Several cleavage cocktails were screened and the more classic ${ }^{27}$ ["Reagent K" (TFA/phenol/water/TIPS, 88/5/5/2), "Reagent R" (TFA/thioanisole/EDT/anisole,

90/5/3/2) and "Reagent $\mathrm{P}+$ " (TFA/phenol/methanesulfonic acid, 95/2.5/2.5)] failed, giving the mono-protected compound as main product (the Mtr on the amine was still present), with a low yield (5-20\%) of the desired totally deprotected product, even after 48 h . Finally, with the use of TFA/TMSBr/thioanisole/EDT/phenol (70/14/10/5/1) cleavage cocktail at room temperature for 2 h, fully deprotected compounds 63-66 were obtained in 70-85\% isolated yield.

Thus, we were ready to conjugate Paclitaxel to our ligands: the 2^{\prime}-hydroxyl function of Paclitaxel was derivatized with succinic anhydride, following a reported procedure. ${ }^{28}$ The resulting Paclitaxel hemisuccinate ester $\mathbf{6 7} 7^{28}$ was activated using diisopropylcarbodiimide (DIC) and N-hydroxysulfosuccinimide sodium salt (sulfo-NHS), followed by coupling with cyclo[DKP-RGD] ligands 63-66 (Scheme 5).

Scheme 5. Synthesis of cyclo[DKP-RGD] - PTX conjugates 10-13 ${ }^{a}$

${ }^{a}$ Reagents and conditions: (a) succinic anhydride, py, DCM, overnight, $0^{\circ} \mathrm{C}$ to room temp., 94\%; (b) N-hydroxysulfosuccinimide sodium salt, DIC, DMF, overnight, room temp.; (c) cyclo(DKP-RGD) 63, 64, $\mathbf{6 5}$ or $\mathbf{6 6}, \mathrm{CH}_{3} \mathrm{CN}$, aq. phosphate buffer, $\mathrm{pH}=7.3,10 \mathrm{~h}$ at $0^{\circ} \mathrm{C}$ then 8 h at room temp., 60-70\%.

The conjugation yield was strongly pH -dependent: at $\mathrm{pH}<7.0$ the reaction did not proceed, whereas at $\mathrm{pH}>7.5$ the hydrolysis of the sulfo-NHS ester substantially competed with the primary amine reaction. The synthesis of conjugates $\mathbf{1 0 - 1 3}$ was finally achieved in good yield ($60-70 \%$) by adding a 0.1 M aqueous NaOH solution when required throughout the reaction, for maintaining the pH value at 7.3.

Solubility and stability in a physiological solution. The solubility of conjugate cyclo[DKP$f 3$-RGD]-PTX 11 was investigated in a physiological solution $\left(0.9 \% \mathrm{NaCl}\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right) /$ Cremophor EL/ethanol ($90: 5: 5 \mathrm{v} / \mathrm{v}$) by quantitative HPLC. A 1.92 mM clear solution turned out to be oversaturated and slowly flocculated to reach a concentration of 1.28 mM in 2 days (Figure 5, left diagram). The precipitate was the conjugate $\mathbf{1 1}$ itself, with a purity $>99.5 \%$. Compound $\mathbf{1 1}$ $(1.28 \mu \mathrm{~mol})$ dissolved in 0.1 mL of Cremophor EL/ethanol $(1: 1 \mathrm{v} / \mathrm{v})$ and diluted with 0.9 mL of physiological solution, was perfectly stable for one week, with a purity $>99.5 \%$. The 1.28 mM solution did not undergo any precipitation or decomposition (Figure 5, right diagram).

Figure 5. Solubility and stability of cyclo[DKP-f3-RGD]-PTX 11 in a physiological solution ${ }^{a}$

${ }^{a}$ Quantitative HPLC determination of solubility and stability of compound $\mathbf{1 1}$ in a physiological solution $\left(0.9 \% \mathrm{NaCl}\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right) /$ Cremophor EL/ethanol ($90: 5: 5 \mathrm{v} / \mathrm{v}$). A 1.92 mM clear solution of $\mathbf{1 1}$ turned out to be oversaturated and slowly flocculated to reach a concentration of 1.28 mM in 2 days (left diagram). The 1.28 mM solution did not undergo any precipitation or decomposition over seven days (right diagram).

Plasma stability assays. Paclitaxel conjugate 11 ($1.28 \mu \mathrm{~mol}$) was dissolved in DMSO (128 $\mu \mathrm{L}$) and then diluted with pH 7.5 phosphate buffer (PBS) to give a $200 \mu \mathrm{M}$ stock solution. Murine plasma was spiked with the stock solution to obtain a final $10 \mu \mathrm{M}$ concentration and incubated at $37{ }^{\circ} \mathrm{C}$. At time points varying from 1 min to 330 min , aliquots of $50 \mu \mathrm{~L}$ were taken and quenched with $200 \mu \mathrm{~L}$ of ice-cold acetonitrile (containing Verapamil as internal standard, see the Experimental Section for details). Samples were centrifuged at 3000 rpm for 20 min and the supernatant was analyzed by RP-HPLC UV-MS/MS. The data were fitted using a signal phase exponential decay and the calculated half-life was $=165 \pm 2 \mathrm{~min}$ (Figure 6, left diagram). The same procedure was adopted for a pooled human plasma stability assay and in this case the calculated half-life was $=143 \pm 3 \mathrm{~min}$ (Figure 6, right diagram). Free Paclitaxel accumulated during the assays as a result of hydrolysis of the succinyl ester bond at the PTX-2' position. These results were very encouraging and showed that cyclo[DKP-f3-RGD]-PTX $\mathbf{1 1}$ is sufficiently stable to undergo animal testing with murine models. In fact, similar RGD ligands showed significant (maximum) tumor uptakes in mice after $10,{ }^{29} 20,{ }^{30} 30,{ }^{31}$ and $60 \mathrm{~min} .{ }^{32}$

Summarizing, we have investigated the stability of compound $\mathbf{1 1}$ to hydrolysis both in a physiological solution and in murine and human plasma. As a matter of fact, cyclo[DKP-f3-RGD]-PTX 11 turned out to be far more stable than PTX-E[cyclo(RGDfK) $]_{2} \mathbf{9}^{25}$ (see Figure 3, and the relevant discussion in the Introduction). The rather high stability of $\mathbf{1 1}$ can possibly be attributed to a more lipophilic structure, where the ester linkage is less accessible in the protic medium than in Ryppa's compound 9.

Figure 6. Stability of cyclo[DKP-f3-RGD]-PTX 11 in murine and human plasma ${ }^{a}$

${ }^{a}$ Quantitative HPLC determination of stability of compound $\mathbf{1 1}(10 \mu \mathrm{M})$ in murine plasma (left diagram) and in human plasma (right diagram) at $37^{\circ} \mathrm{C}$.

Integrin receptors competitive binding assays. Cyclo[DKP-RGD] - PTX conjugates 10-13 were examined in vitro for their ability to inhibit biotinylated vitronectin binding to the purified $\alpha_{v} \beta_{3}$ and $\alpha_{v} \beta_{5}$ receptors and compared to their unfunctionalized analogs 2, 3, 4 and $\mathbf{6}$, to the unconjugated ligands $\mathbf{6 4}$ and 68, and to the reference compounds cyclo[RGDfV] ${ }^{33}$ and ST1646. ${ }^{34}$ The results are collected in Table 1. Screening assays were performed incubating the immobilized integrin receptors with various concentrations $\left(10^{-12}-10^{-5} \mathrm{M}\right)$ of the RGD ligands in the presence of biotinylated vitronectin $(1 \mu \mathrm{~g} / \mathrm{mL})$, and measuring the concentration of bound vitronectin in the presence of the competitive ligands. Low nanomolar values were obtained with all the Paclitaxel-RGD constructs (10-13), comparable to the unfunctionalized ligands $(\mathbf{2}, \mathbf{3}, 4$ and 6). These data reassured us that the enormous increase of steric hindrance in the cyclo[DKPRGD] - PTX conjugates, due to presence of the linker bearing Paclitaxel through the succinate tether, did not influence the high affinity for integrin receptors $\alpha_{v} \beta_{3}$ and $\alpha_{v} \beta_{5}$. Notably, for inhibition of vitronectin binding to the $\alpha_{v} \beta_{3}$ receptor, unconjugated ligand 64 required a 5 -fold higher concentration than both its unfunctionalized and conjugated analogs (compounds $\mathbf{3}$ and

11, respectively). This reduced affinity may result from perturbation of the electrostatic clamp (i.e. the binding interactions of the carboxylate and guanidinium groups with the charged regions of the receptor), ${ }^{14}$ induced by the free amine present in 64.

Table 1. Inhibition of biotinylated vitronectin binding to $\alpha_{v} \beta_{3}$ and $\alpha_{v} \beta_{5}$ receptors

Compound	Structure	$\begin{aligned} & \alpha_{\mathrm{v}} \beta_{3} \\ & \mathrm{IC}_{50}[\mathrm{nM}]^{a} \end{aligned}$	$\begin{aligned} & \alpha_{\mathrm{v}} \beta_{5} \\ & \mathrm{IC}_{50}[\mathrm{nM}]^{a} \end{aligned}$
10	cyclo[DKP-f2-RGD]-PTX ${ }^{\text {b }}$	8.5 ± 0.8	518 ± 10
11	cyclo[DKP-f3-RGD]-PTX ${ }^{\text {b }}$	5.2 ± 2.3	219 ± 124
12	cyclo[DKP-f4-RGD]-PTX ${ }^{\text {b }}$	0.9 ± 0.6	76 ± 32
13	cyclo[DKP-f6-RGD]-PTX ${ }^{\text {b }}$	1.1 ± 0.1	22 ± 3
64	cyclo [DKP-f3-RGD] ${ }^{\text {c }}$	26.4 ± 3.7	$>5 \cdot 10^{3}$
68	cyclo[DKP-f3-RGD]- hemisuccinamide ${ }^{d}$	4.1 ± 0.6	75 ± 1
2	cyclo[DKP-2-RGD] ${ }^{\text {e }}$	3.2 ± 2.7	114 ± 99
3	cyclo[DKP-3-RGD] ${ }^{\text {e }}$	4.5 ± 1.1	149 ± 25
4	cyclo[DKP-4-RGD] ${ }^{\text {e }}$	7.6 ± 4.3	216 ± 5
6	cyclo[DKP-6-RGD] ${ }^{\text {e }}$	2.1 ± 0.6	79 ± 3
cyclo $[\text { RGDfV }]^{f}$	cyclo[RGDfV]	3.2 ± 1.3	7.5 ± 4.8
ST1646 ${ }^{\text {f }}$	ST1646 ${ }^{\text {g }}$	1.0 ± 0.5	1.4 ± 0.8

${ }^{a} \mathrm{IC}_{50}$ values were calculated as the concentration of compound required for 50% inhibition of biotinylated vitronectin binding as estimated by GraphPad Prism software; all values are the arithmetic mean \pm SD of triplicate determinations. ${ }^{b}$ See Figure 4. ${ }^{c}$ See Scheme 4. ${ }^{d}$ Compound $\mathbf{6 8}$ (see Figure 7) was synthesized as described in the Supporting Information. ${ }^{e}$ See Figure 2. ${ }^{f}$ Reference compound. ${ }^{g}$ See Figure 1.

Derivatization of the amine with succinic anhydride gave the hemisuccinamide 68 and restored the high binding affinity for the $\alpha_{v} \beta_{3}$ receptor. Interestingly, unlike reference compounds cyclo(RGDfV) and ST1646, the cyclo[DKP-RGD] peptidomimetics were ca. 20-200 fold more selective for the $\alpha_{v} \beta_{3}$ integrin with respect to the $\alpha_{v} \beta_{5}$ in this kind of assay.

Figure 7. Cyclo[DKP-f3-RGD] - hemisuccinamide

Sensitivity of tumor cell lines treated with cyclo[DKP-RGD] - PTX conjugates 10-13. Cyclo[DKP-RGD] - PTX conjugates $\mathbf{1 0 - 1 3}$ were tested in vitro for their cytotoxic activity in comparison with Paclitaxel, against a panel of human tumor cell lines. The cell sensitivity assays (Table 2) clearly indicated that the functionalized cyclo[DKP-f3-RGD] integrin ligand $\mathbf{6 4}$ was not cytotoxic, while the cyclo[DKP-RGD]-PTX conjugates displayed a cytotoxic activity similar to that of Paclitaxel (same order of magnitude). These data imply that free Paclitaxel is released at some stage, possibly after the conjugates have been internalized into the cells, because it is well known that the free $2^{\prime}-\mathrm{OH}$ group is necessary for Paclitaxel to exert its cytotoxic and microtubule-stabilizing activities. ${ }^{35}$ Compounds 10-13, 64 and Paclitaxel were also tested in vitro on normal HDFC fibroblasts. When cells started to proliferate and were exposed to different
concentrations of these compounds (range of concentrations tested $=64-1000 \mathrm{nM}$), a marginal inhibition of cell growth was observed. The effect was not concentration-dependent, suggesting that the compounds were not cytotoxic but were at best cytostatic in these cells. The data reported in Table 2 did not identify undoubtedly a lead compound for evaluation of antitumor activity with in vivo models. Therefore, we chose cyclo[DKP-f3-RGD]-PTX 11 as our lead conjugate mainly because of its straightforward synthetic accessibility on a multi-gram scale.

Flow cytometry was used to detect the expression of $\alpha_{V} \beta_{3}$ and $\alpha_{V} \beta_{5}$ integrins on the surface of the different cancer cell lines (Table 3). Among these, the cisplatin-resistant IGROV-1/Pt1 cells expressed very high levels of integrin $\alpha_{\nu} \beta_{3}$, making them attractive to be tested in murine models with cyclo[DKP-RGD]-PTX construct 11 (vide infra the in vivo experiments).

Table 2. Cell sensitivity of different tumor cell lines to compounds 10-13 and 64 ${ }^{a}$

Compd	Structure	IC 50 (nM)					
		IGROV-1	$\begin{aligned} & \text { IGROV-1 } \\ & \text { /Pt1 } \end{aligned}$	U2-OS	SKOV3	PANC-1	MIA- PaCa2
10	$\begin{gathered} \hline \text { Cyclo[DKP-f2- } \\ \text { RGD]-PTX } \end{gathered}$	17.7 ± 6.0	18.7 ± 6.0	2.2 ± 0.5	1.6 ± 1.0	5.8 ± 4.0	2.0 ± 0.7
11	$\begin{gathered} \text { Cyclo[DKP-f3- } \\ \text { RGD]-PTX } \end{gathered}$	61.3 ± 19.1	4.9 ± 2.0	12.8 ± 0.1	1.2 ± 0.1	2.4 ± 0.8	2.3 ± 0.4
12	$\begin{gathered} \text { Cyclo[DKP-f4- } \\ \text { RGD]-PTX } \end{gathered}$	34.4 ± 29.0	3.7 ± 2.0	6.8 ± 4.6	2.4 ± 0.9	3.2 ± 0.7	1.8 ± 0.6
13	$\begin{gathered} \text { Cyclo[DKP-f6- } \\ \text { RGD]-PTX } \end{gathered}$	48.2 ± 2.2	2.4 ± 1.9	5.7 ± 4.4	2.4 ± 1.1	3.5 ± 0.1	2.5 ± 0.6
64	Cyclo[DKP-f3-RGD]	> 1200	> 18000	> 6300	> 11600	> 11600	> 11600
PTX	Paclitaxel	23.0 ± 0.8	2.2 ± 0.8	3.4 ± 0.4	2.7 ± 1.1	5.2 ± 1.9	7.2 ± 3.8

${ }^{a}$ Cell sensitivity was evaluated by growth inhibition assays based on cell counting. Cells were seeded and 24 h later they were exposed to the compounds for 72 h . At the end of treatment, cells were counted using a cell counter.

Table 3. Integrin expression of tumor cell lines of different tumor types ${ }^{a}$

Mean fluorescence intensity						
Integrin	IGROV-1	IGROV-1 /Pt1	U2-OS	SKOV3	PANC-1	MIA- PaCa2
$\alpha_{\vee} \beta_{3}$	4.8 ± 1.9	23.3 ± 5.0	1.8 ± 0.6	6.4 ± 0.05	7.9 ± 2.8	1.2 ± 0.1
$\alpha_{\mathrm{V}} \beta_{5}$	3.4 ± 0.9	3.3 ± 0.5	27.4 ± 0.1	4.4 ± 0.5	25.7 ± 6.5	5.6 ± 0.9

${ }^{a}$ Integrin expression levels were examined by immunofluorescence using a flow cytometer. The ratios between the mean fluorescence intensity of cells incubated with primary antibody and isotypic control are shown.

Comparing the data presented in Tables 2 and 3, it is quite clear that there is no correlation between the phenotypic integrin expression levels and efficacy of cyclo[DKP-RGD]-PTX conjugates, in in vitro assays. The cell sensitivity studies were carried out to determine whether Paclitaxel was released from the conjugate; in these in vitro assays, no tumor homing effect can be expected and therefore the different response can be attributed only to a higher or lower sensitivity of the different cell lines to the particular compound tested, independently of the integrin receptor expression. On the other hand, the evaluation of integrin expression was important for the choice of the best in vivo model for efficacy studies (i.e., the choice of cisplatin-resistant IGROV-1/Pt1, a cell line where the expression of integrin $\alpha_{\mathrm{v}} \beta_{3}$ is particularly relevant).

Evaluation of in vivo antitumor activity. Antitumor activity of our lead conjugate cyclo[DKP-f3-RGD]-PTX 11, delivered i.v. and administered every 4 days for 4 times (q4dx4), was examined on the $\alpha_{v} \beta_{3}$-rich IGROV-1/Pt1 carcinoma grown in athymic mice as subcutaneous (s.c.) tumor. A significant, dose-related antitumor effect was observed following administration of two dose levels of compound $\mathbf{1 1}(15 \mathrm{mg} / \mathrm{kg}$ and $30 \mathrm{mg} / \mathrm{kg})$. Moreover, when
compound $11(30 \mathrm{mg} / \mathrm{kg}$, i.e. $19.1 \mu \mathrm{~mol} / \mathrm{kg})$ was compared to Paclitaxel ($30 \mathrm{mg} / \mathrm{kg}$, i.e. 35.1 $\mu \mathrm{mol} / \mathrm{kg}$) administered with the same weight dosage and schedule, it displayed better effects in terms of tumor volume inhibition (TVI, 85 vs 76%), despite the lower (ca. half) molar dosage used (Figure 8). Furthermore, 2 out of 8 tumors in animals receiving conjugate 11 disappeared without any evidence of disease until the end of the experiment. Thus, an improved and more persistent effect against the growth of treated tumors was achieved, as indicated also by the higher $\log _{10}$ Cell Kill value (LCK, 1.4 vs 0.7 , Table 4). Treatment was well tolerated, as no deaths or significant weight losses were observed among the treated animals. ${ }^{36}$

Figure 8. In vivo antitumor activity studies of cyclo[DKP-f3-RGD]-PTX 11 compared to Paclitaxel on IGROV-1/Pt1 ovarian carcinoma ${ }^{a}$

${ }^{a}$ Efficacy of compound 11 (CPD11) and Paclitaxel (PTX) administered intravenously every fourth day for four times on the ovarian carcinoma IGROV-1/Pt1 xenografted subcutaneously in athymic nude mice. The solvent was injected for the control group (\circ). Each point represents the mean tumor volume from 8 tumors. Bars represent S.D. *, $\mathrm{P}<0.05$ by Student's t test on tumor volumes over control mice.

Table 4. In vivo antitumor activity and toxicity profile of cyclo[DKP-f3-RGD]-PTX 11 and Paclitaxel against human ovarian cancer xenografts (IGROV-1/Pt1) in mice, as a function of dose.

| Treatment | Dose
 $(\mathrm{mg} / \mathrm{kg})$ | Dose
 $(\mu \mathrm{mol} / \mathrm{kg})$ | $\mathrm{TVI} \%^{a}$ | CR^{b} | NED^{c} | LCK^{d} | $\mathrm{BWL} \%^{e}$ | $\mathrm{D} / \mathrm{T}^{f}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Paclitaxel | 30 | 35.1 | 76 | $3 / 8$ | $0 / 8$ | 0.7 | 4 | $0 / 4$ |
| Cyclo [DKP-f3-
 RGD]-PTX 11 | 15 | 9.6 | 64 | $0 / 8$ | - | 0.3 | 0 | $0 / 4$ |
| Cyclo [DKP-f3-
 RGD]-PTX 11 | 30 | 19.1 | 85 | $2 / 8$ | $2 / 8$ | 1.4 | 3 | $0 / 4$ |

${ }^{a}$ TVI\%: Tumor Volume Inhibition percent in treated over control mice, calculated 10 d after the end of treatments.
${ }^{b} \mathrm{CR}$: Complete Response: disappearance of tumors lasting at least 10 days.
${ }^{c}$ NED: No Evidence of Disease at the end of experiment (at day 66).
${ }^{d}$ LCK: Gross $\log _{10}$ Cell Kill to reach $600 \mathrm{~mm}^{3}$ of tumor volume (see Figure 8).
${ }^{e}$ BWL\%: Body Weight Loss percentage induced by drug treatment.
${ }^{f} \mathrm{D} / \mathrm{T}$: Dead/Treated mice.

Immunohistochemistry analysis of treatment effects. To investigate the mechanism underlying the improved antitumor activity of cyclo[DKP-f3-RGD]-PTX 11 over paclitaxel, histopathological analysis was carried out in tumors from untreated mice and from mice treated with cyclo[DKP-f3-RGD]-PTX 11, compound 64, and Paclitaxel (Figure 9). The comparison between Paclitaxel and cyclo[DKP-f3-RGD]-PTX 11 was carried out administering $30 \mathrm{mg} / \mathrm{kg}$ for both compounds, amounts which correspond to $35.1 \mu \mathrm{~mol} / \mathrm{kg}$ for Paclitaxel and to $19.1 \mu \mathrm{~mol} / \mathrm{kg}$ for cyclo [DKP-f3-RGD]-PTX 11. Histological analysis indicated the presence of a high number of mitotic cells in the group treated with cyclo[DKP-f3-RGD]-PTX 11, compared to the other groups (Figure 9). In addition, the majority of the mitoses observed in the groups treated with
either cyclo[DKP-f3-RGD]-PTX 11 or Paclitaxel were aberrant, an observation consistent with the mechanism of action of spindle poisons. ${ }^{37}$ High levels of aberrant mitoses were observed with cyclo[DKP-f3-RGD]-PTX 11, already 24 h after the second treatment and persisted after the fourth treatment. On the contrary, the amount of aberrant mitotic cells observed after mice treatment with Paclitaxel decreased over time.

Figure 9. Histopathological analysis of IGROV-1/Pt1 xenograft, after treatment with cyclo [DKP- $f 3$-RGD]-PTX 11 ${ }^{a}$

A
normal mitosis

B

C

D

E

${ }^{\text {a }}$ A. Quantitative analysis of mitoses. Mitoses were evaluated in 3 randomly selected 400 x fields using quadruplicate samples. The reported numbers correspond to the mean number of normal/aberrant mitoses in analyzed groups: control groups (control); groups treated with compound 64 (CPD64); group treated with compound 11 (CPD11); groups treated with Paclitaxel (PTX). Note that tumors were obtained from mice sacrificed 24 h after the second or the fourth treatment. B. Randomly selected high power field (hpf) within the bulk of the tumor from a control group sample, characterized by normal mitoses (hematoxyilin and eosin; Bar, 50 $\mu \mathrm{m})$. C. Randomly selected hpf within the bulk of the tumor from a sample treated with compound 64. Hyperchromatic nuclei with condensed chromatin are evident (hematoxylin and eosin; Bar, $50 \mu \mathrm{~m}$). D. Randomly selected hpf within the bulk of the tumor from a sample treated with compound 11. Note markedly aberrant mitoses, with formation of nuclear envelops around individual clusters of missegregated chromosomes (mitotic catastrophe) (hematoxylin and eosin; Bar, $50 \mu \mathrm{~m}$). E. Randomly selected hpf within the bulk of the tumor from a sample treated with Paclitaxel. Note markedly aberrant mitoses, with formation of nuclear envelops around individual clusters of missegregated chromosomes (mitotic catastrophe) (hematoxylin and eosin; Bar, $50 \mu \mathrm{~m})$.

Since tumors from mice treated with cyclo[DKP-f3-RGD]-PTX 11 had the highest number of mitoses and the major part of them were atypical, it is likely that tumor cells treated with compound $\mathbf{1 1}$ entered mitosis, but failed to replicate and incurred in mitotic arrest.

CONCLUSIONS

In conclusion, since α_{V} integrins are overexpressed on the surface of cancer cells, we have synthesized a small library of integrin ligand - Paclitaxel conjugates $\mathbf{1 0 - 1 3}$ with the aim of using the tumor-homing cyclo[DKP-RGD] peptidomimetics for site-directed delivery of the cytotoxic
drug. All the Paclitaxel-RGD constructs $\mathbf{1 0 - 1 3}$ inhibited biotinylated vitronectin binding to the purified $\alpha_{V} \beta_{3}$ receptor at low nanomolar concentration, showing that the enormous increase of steric hindrance in the conjugates, due to presence of the linker bearing Paclitaxel through the succinate tether, did not influence the high affinity for the integrin receptors. Cyclo[DKP-RGD]PTX conjugates $\mathbf{1 0 - 1 3}$ showed in vitro cytotoxic activity against a panel of human tumor cell lines similar to that of Paclitaxel. Among the cell lines, the cisplatin-resistant IGROV-1/Pt1 cells expressed high levels of integrin $\alpha_{V} \beta_{3}$, making them attractive to be tested in in vivo models. Cyclo[DKP- $f 3$-RGD]-PTX 11 displayed sufficient stability in physiological solution and in both human and murine plasma to be a good candidate for in vivo testing. In tumor-targeting experiments against the IGROV-1/Pt1 human ovarian carcinoma xenotransplanted in nude mice, compound 11 exhibited better effects than Paclitaxel in terms of tumor volume inhibition and $\log _{10}$ Cell Kill, despite the lower (ca. half) molar dosage used. Moreover, 2 out of 8 tumors in animals receiving conjugate $\mathbf{1 1}$ disappeared without any evidence of disease until the end of experiment, suggesting an improved and more persistent antitumor effect. Treatment was well tolerated, as no deaths or significant weight losses were observed among the treated animals. Comparison of the in vitro data shown in Table 2 (where conjugate $\mathbf{1 1}$ is apparently two-fold less cytotoxic than Paclitaxel with respect to the IGROV-1/Pt-1 cancer cell line) with the in vivo data of Table 4 and Figure 8 (where conjugate $\mathbf{1 1}$ shows a superior antitumor effect compared to Paclitaxel against the IGROV-1/Pt1 human ovarian carcinoma xenotransplanted in nude mice) is not contradictory but rather reinforces the tumor homing effect claimed for compound 11. In fact, in vivo the conjugate is targeted to the tumor, whereas in vitro it acts through release of Paclitaxel. The histological examination of tumor specimens supports this view, because the induction of aberrant mitosis observed after treatment with conjugate $\mathbf{1 1}$ was more frequent,
pronounced and persistent than that observed with Paclitaxel (see Figure 9A, right diagram), consistent with a successful drug delivery to the target. The superior in vivo activity of cyclo[DKP-f3-RGD]-PTX 11 as compared to Paclitaxel supports the view that integrin ligands are promising tools to improve delivery of cytotoxic drugs.

EXPERIMENTAL SECTION

MATERIALS AND METHODS. All manipulations requiring anhydrous conditions were carried out in flame-dried glassware, with magnetic stirring and under a nitrogen atmosphere. All commercially available reagents were used as received. Anhydrous solvents were purchased from commercial sources and withdrawn from the container by syringe, under a slight positive pressure of nitrogen. (S) - and (R)-serine methyl ester hydrochloride, ${ }^{38}(2 R)$ - and $(2 S)$-aspartic acid β-allyl ester hydrochloride, ${ }^{39} N$-(tert-butoxycarbonyl)-(2R)-aspartic acid β-allyl ester, ${ }^{39}(S)$ and (R) - N-Boc-serine methyl ester, ${ }^{40} \quad(S)$ - and (R)-methyl 3-azido-2-(tertbutoxycarbonylamino)propanoate, ${ }^{41} \quad(S)$ - and $\quad(R)$-3-azido-2-(tert-butoxycarbonylamino) propanoic acid, ${ }^{41}(S)$ - and (R)-dimethyl aspartate hydrochloride, ${ }^{42}(S)$ - and (R) - N-benzyldimethyl aspartate ${ }^{43}$ and N-Boc-glycine benzyl ester ${ }^{44}$ were prepared according to literature procedures and their analytical data were in agreement with those already published. Reactions were monitored by analytical thin layer chromatography using 0.25 mm pre-coated silica gel glass plates (DURASIL-25 UV254) and compounds visualized using UV fluorescence, aqueous potassium permanganate or ninhydrin. Flash column chromatography was performed according to the method of Still and co-workers ${ }^{45}$ using Chromagel 60 ACC ($40-63 \mu \mathrm{~m}$) silica gel. Melting points were obtained in an open capillary apparatus and are uncorrected. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were
recorded on a spectrometer operating at 400.16 MHz . Proton chemical shifts are reported in ppm (δ) with the solvent reference relative to tetramethylsilane (TMS) employed as the internal standard. The following abbreviations are used to describe spin multiplicity: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad signal, $\mathrm{dd}=$ doublet of doublet. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra were recorded on a spectrometer operating at 100.63 MHz , with complete proton decoupling. Carbon chemical shifts are reported in $\mathrm{ppm}(\delta)$ relative to TMS with the respective solvent resonance as the internal standard. Infrared spectra were recorded on a standard FT-IR and peaks are reported in cm^{-1}. Optical rotation values were measured on an automatic polarimeter with a 1 dm cell at the sodium D line and are given in units of $10^{-1} \mathrm{deg}$ $\mathrm{cm}^{2} \mathrm{~g}^{-1}$. High resolution mass spectra (HRMS) were performed on a Fourier Transform Ion Cyclotron Resonance (FT-ICR) Mass Spectrometer APEX II \& Xmass software (Bruker Daltonics) - 4.7 T Magnet (Magnex) equipped with ESI source, available at CIGA (Centro Interdipartimentale Grandi Apparecchiature) c/o Università degli Studi di Milano. Low resolution mass spectra (MS) were measured on a Waters Acquity UPLC-MS (ESI ion source). All described compounds showed a purity $>98 \%$, as determined by HPLC (UV and MS detectors). LC-UV/MS data were collected with an Agilent 1100 HPLC connected to a Bruker Esquire 3000+ ion trap mass spectrometer through an ES interface.

Cancer cell lines IGROV-1 e IGROV-1/Pt1 were obtained as previously reported. ${ }^{46}$ Cancer cell lines U2OS, SKOV3, PANC-1 and MIA Paca2 are ATCC cultures, registered as follows. U2OS: ATCC HTB-96. SKOV3: ATCC HTB-77. PANC-1: ATCC CRL-1469. MIA PaCa2: ATCC CRL-1420.

SOLID-PHASE RECEPTOR-BINDING ASSAY. Purified $\alpha_{v} \beta_{3}$ and $\alpha_{v} \beta_{5}$ receptors (Chemicon International, Inc., Temecula, CA, USA) were diluted to $0.5 \mu \mathrm{~g} / \mathrm{mL}$ in coating buffer containing 20 mM Tris- $\mathrm{HCl}(\mathrm{pH} 7.4), 150 \mathrm{mM} \mathrm{NaCl}, 1 \mathrm{mM} \mathrm{MnCl} 2,2 \mathrm{mM} \mathrm{CaCl} 2$ and 1 mM MgCl_{2}. An aliquot of diluted receptors ($100 \mu \mathrm{~L} /$ well) was added to 96 -well microtiter plates (NUNC MW 96F MEDISORP STRAIGHT) and incubated overnight at $4{ }^{\circ} \mathrm{C}$. The plates were then incubated with blocking solution (coating buffer plus 1% bovine serum albumin) for additional 2 hours at room temperature to block nonspecific binding followed by 3-hour incubation at room temperature with various concentrations $\left(10^{-12}-10^{-5} \mathrm{M}\right)$ of test compounds in the presence of $1 \mu \mathrm{~g} / \mathrm{mL}$ biotinylated vitronectine. Biotinylation was performed using EZ-Link Sulfo-NHS-Biotinylation kit (Pierce, Rockford, IL). After washing, the plates were incubated for 1 hour at room temperature with streptavidin-biotinylated peroxidase complex (Amersham Biosciences, Uppsala, Sweden) followed by 30 minutes incubation with $100 \mu \mathrm{~L}$ Substrate Reagent Solution (R\&D Systems, Minneapolis, MN) before stopping the reaction by addition of $50 \mu \mathrm{~L}$ of $2 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$. Absorbance at 415 nm was read in a Synergy ${ }^{\mathrm{TM}}$ HT Multi-Detection Microplate Reader (BioTek Instruments, Inc.). Each data point is the result of the average of triplicate wells and was analyzed by nonlinear regression analysis with Prism GraphPad program.

GENERAL PROCEDURE A FOR DEPROTECTION REACTIONS. To a solution of the N-Boc-protected amino acid or peptide in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.13 \mathrm{M})$ was added half volume of TFA and the reaction was stirred at rt for 2 h . The solvent was evaporated, toluene ($2 \times$) was added followed by evaporation, and then ether was added and evaporated to afford the corresponding TFA salt.

GENERAL PROCEDURE B FOR COUPLING REACTIONS. To a solution of the N protected amino acid in DMF, under nitrogen atmosphere and at $0^{\circ} \mathrm{C}$, HATU (1.2 equiv), HOAt (1.2 equiv) and $i-\mathrm{Pr}_{2} \mathrm{NEt}$ (4 equiv) were added. After 30 min , a solution of the TFA salt of the peptide in DMF was added and the reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h and at rt overnight. The mixture was diluted with AcOEt and consecutively washed with $1 \mathrm{M} \mathrm{KHSO}_{4}$ $(2 \times)$, aqueous $\mathrm{NaHCO}_{3}(2 \times)$ and brine $(2 \times)$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent evaporated under reduced pressure to afford the crude product.

GENERAL PROCEDURE C FOR THE SYNTHESIS OF cyclo[DKP-RGD]

 PACLITAXEL CONJUGATES 10-13. Diisopropylcarbodiimide $(11.93 \mu \mathrm{~L}, 9.72 \mathrm{mg}, 0.077$ mmol, 1.9 equiv) was added to a solution of 2'-succinyl-Paclitaxel $67(49 \mathrm{mg}, 0.0513 \mathrm{mmol}$, 1.25 equiv) and N-hydroxysulfosuccinimide sodium salt ($13.94 \mathrm{mg}, 0.0642 \mathrm{mmol}, 1.55$ equiv) in dry dimethylformamide $(2.0 \mathrm{~mL})$. The resulting solution was stirred under argon at room temperature for 24 h . Volatiles were then removed in vacuo to give an off-white solid, which was re-dissolved in acetonitrile (2 mL). A solution of the appropriate cyclo[DKP-RGD] (63-66) (35 $\mathrm{mg}, 0.0414 \mathrm{mmol})$ in pH 7.0 phosphate buffer $(0.5 \mathrm{M}, 1.0 \mathrm{~mL})$ was then added to the acetonitrile solution, and the pH was adjusted to 7.3 with $\mathrm{NaOH}(0.2 \mathrm{M}$, a few drops). The resulting solution was rapidly cooled to $0^{\circ} \mathrm{C}$ and stirred for 10 hours, warmed to room temperature and stirred for further 18 h . During the entire period the pH value was kept near 7.3 adding 0.1 M aqueous NaOH , when required. Dioxane/water $(1: 1,10 \mathrm{~mL})$ was then added to the reaction mixture and the resulting solution was freeze-dried. The solid recovered from freeze-drying was purified by semipreparative-HPLC [Water's Atlantis 21 mm x 10 cm column, gradient: $90 \%\left(\mathrm{H}_{2} \mathrm{O}+0.1 \%\right.$$\mathrm{HCOOH}) / 10 \%\left(\mathrm{CH}_{3} \mathrm{CN}+0.1 \% \mathrm{HCOOH}\right)$ to $30 \%\left(\mathrm{H}_{2} \mathrm{O}+0.1 \% \mathrm{HCOOH}\right) / 70 \%\left(\mathrm{CH}_{3} \mathrm{CN}+\right.$ $0.1 \% \mathrm{HCOOH})$]. The purified products were then freeze dried to give the desired compounds (10-13) as white solids.

Cyclo[DKP-f2-RGD]-PTX 10. Compound 10 was synthesized according to general procedure $\mathrm{C}\left(40 \mathrm{mg}, 60 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.09(\mathrm{dd}, 2 \mathrm{H}, J=8.4,1.2 \mathrm{~Hz}), 7.84(\mathrm{dd}$, $2 \mathrm{H}, J=7.1,1.6 \mathrm{~Hz}), 7.74(\mathrm{tt}, 1 \mathrm{H}, J=6.8,1.6 \mathrm{~Hz}), 7.64(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.59-7.54(\mathrm{~m}, 1 \mathrm{H})$, 7.49-7.44 (m, 6H), 7.28-7.25 (m, 4H), $7.22(\mathrm{tt}, 1 \mathrm{H}, J=5.8,2.8 \mathrm{~Hz}), 6.43(\mathrm{~s}, 1 \mathrm{H}), 5.98(\mathrm{t}, 1 \mathrm{H}, J=$ $9.1 \mathrm{~Hz}), 5.69(\mathrm{~d}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}), 5.61(\mathrm{~d}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz}), 5.45(\mathrm{~d}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}), 5.24(\mathrm{~d}, 1 \mathrm{H}$, $J=15.1 \mathrm{~Hz}), 5.10(\mathrm{dd}, 1 \mathrm{H}, J=9.7,1.6 \mathrm{~Hz}), 4.77(\mathrm{~m}$ overlapped with water signal, 1 H$), 4.65(\mathrm{~m}$ overlapped with water signal, 1H), 4.40-4.30 (m, 4H), $4.21(\mathrm{~m}, 3 \mathrm{H}), 4.08(\mathrm{~d}, 2 \mathrm{H}, J=15.7 \mathrm{~Hz})$, $3.85(\mathrm{~d}, 1 \mathrm{H}, J=4.6 \mathrm{~Hz}), 3.78(\mathrm{~d}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz}), 3.64(\mathrm{~d}, 1 \mathrm{H}, J=16.3 \mathrm{~Hz}), 3.28(\mathrm{~m}$ overlapped with solvent signal, 1 H), $3.22(\mathrm{t}, 2 \mathrm{H}, J=6.7 \mathrm{~Hz}), 2.98(\mathrm{dd}, 1 \mathrm{H}, J=13.2,7.4 \mathrm{~Hz}), 2.84-2.75(\mathrm{~m}$, $2 \mathrm{H}), 2.71-2.68(\mathrm{~m}, 2 \mathrm{H}), 2.64-2.50(\mathrm{~m}, 3 \mathrm{H}), 2.37-2.34(\mathrm{~m}, 4 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~m}, 1 \mathrm{H}), 1.89-$ $1.79(\mathrm{~m}, 5 \mathrm{H}), 1.75-1.59(\mathrm{~m}, 7 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta$ $205.7,175.8,175.0,174.5,174.17,174.02,173.7,172.09,171.96,171.1,170.74,170.54,169.8$, $168.0,158.3,142.3,139.6,137.9,135.5,135.04,134.95,134.7,133.2,131.1,130.8,130.2$, $129.94,129.82,129.71,129.3,129.0,128.64,128.46,85.9,82.0,79.1,77.5,76.7,76.14,76.06$, $72.9,72.1,60.3,59.1,55.8,55.4,53.2,51.3,48.1,47.8,44.3,43.7,43.0,40.7,39.9,37.32,37.21$, 36.0, 31.0, 29.9, 28.2, 26.8, 26.2, 23.4, 22.3, 20.9, 15.0, 10.6; IR (film) 3361, 3075, 2940, 1730, $1715,1698,1667,1538,1422,1243,1135,1072 \mathrm{~cm}^{-1}$; MS (ESI) m / z calcd. for $\left[\mathrm{C}_{78} \mathrm{H}_{92} \mathrm{~N}_{11} \mathrm{O}_{24}\right]^{+}$: $1566.63[\mathrm{M}+\mathrm{H}]^{+}$; found: 1566.6 .

Cyclo[DKP-f3-RGD]-PTX 11. Compound 11 was synthesized according to general procedure C ($47 \mathrm{mg}, 70 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 8.12$ (dd, $2 \mathrm{H}, J=8.5,1.4 \mathrm{~Hz}$), 7.83 (dd, $2 \mathrm{H}, J=8.5,1.4 \mathrm{~Hz}), 7.71-7.66(\mathrm{~m}, 1 \mathrm{H}), 7.60(\mathrm{t}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.56-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.42$ (m, 6H), $7.30(\mathrm{~s}, 4 \mathrm{H}), 7.25(\mathrm{tt}, 1 \mathrm{H}, J=7.1,1.6 \mathrm{~Hz}), 6.45(\mathrm{~s}, 1 \mathrm{H}), 6.05(\mathrm{td}, 1 \mathrm{H}, J=9.1,1.0 \mathrm{~Hz})$, $5.79(\mathrm{~d}, 1 \mathrm{H}, J=6.5 \mathrm{~Hz}), 5.64(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 5.44(\mathrm{~d}, 1 \mathrm{H}, J=6.5 \mathrm{~Hz}), 5.13(\mathrm{~d}, 1 \mathrm{H}, J=14.9$ $\mathrm{Hz}), 5.03(\mathrm{dd}, 1 \mathrm{H}, J=9.4,1.6 \mathrm{~Hz}), 4.91-3.86(\mathrm{~m}, 1 \mathrm{H}), 4.75(\mathrm{dd}, 1 \mathrm{H}, J=6.5,4.7 \mathrm{~Hz}), 4.44-4.36$ (m, 3H), 4.30-4.22 (m, 2H), 4.20 (br s, 2H, $J=4.2 \mathrm{~Hz}), 4.16(\mathrm{ddd}, 1 \mathrm{H}, J=12.0,8.7,3.6 \mathrm{~Hz})$, 4.09-4.08 (m, 2H), $3.90(\mathrm{~d}, 1 \mathrm{H}, J=6.0 \mathrm{~Hz}), 3.82(\mathrm{~d}, 1 \mathrm{H}, J=7.1 \mathrm{~Hz}), 3.74-3.68(\mathrm{~m}, 2 \mathrm{H}), 3.61(\mathrm{~d}$, $1 \mathrm{H}, J=17.2 \mathrm{~Hz}), 3.54(\mathrm{dt}, 1 \mathrm{H}, J=11.7,2.8 \mathrm{~Hz}), 3.42(\mathrm{dd}, 1 \mathrm{H}, J=14.6,6.4), 3.27-3.16(\mathrm{~m}, 2 \mathrm{H})$, 2.80-2.75 (m, 2H), 2.72-2.51 (m, 7H), 2.37 (s, 3H), 2.18-2.12 (m, 4H), 2.09-2.01 (m, 1H), 1.92 $(\mathrm{s}, 3 \mathrm{H}), 1.86-1.76(\mathrm{~m}, 3 \mathrm{H}), 1.68-1.63(\mathrm{~m}, 5 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 205.5,174.0,173.60,173.46,173.0,171.63,171.54,171.46,171.2,170.5,167.7$, $142.4,140.2,138.4,135.5,134.80,134.63,132.9,131.39,131.22,130.1,129.72,129.60,129.56$, $129.3,128.6,100.0,85.9,82.3,79.0,77.5,76.9,76.2,75.9,72.9,72.4,61.6,60.6,59.2,55.4$, $54.4,53.2,50.5,48.0,44.6,43.76,43.69,42.2,39.9,37.6,36.49,36.36,31.1,29.8,27.7,26.9$, 26.5, 25.1, 23.3, 22.3, 20.8, 15.1, 10.5; IR (film) 3360, 3075, 2940, 1729, 1714, 1693, 1665, 1537, 1421, 1241, 1135, $1071 \mathrm{~cm}^{-1}$; MS (ESI) m / z calcd. for $\left[\mathrm{C}_{78} \mathrm{H}_{92} \mathrm{~N}_{11} \mathrm{O}_{24}\right]^{+}: 1566.63[\mathrm{M}+\mathrm{H}]^{+}$; found: 1566.6 .

Cyclo[DKP-f4-RGD]-PTX 12. Compound 12 was synthesized according to general procedure C (42 mg, 63\% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 9.22(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}), 8.95(\mathrm{~s}, 1 \mathrm{H})$, $8.79(\mathrm{~s}, 1 \mathrm{H}), 8.44-8.40(\mathrm{~m}, 1 \mathrm{H}), 8.35(\mathrm{t}, 1 \mathrm{H}, J=5.7 \mathrm{~Hz}), 8.20(\mathrm{~s}, 1 \mathrm{H}), 7.98(\mathrm{dd}, 2 \mathrm{H}, J=7.1,1.3$ $\mathrm{Hz}), 7.86(\mathrm{dd}, 2 \mathrm{H}, J=7.2,1.3 \mathrm{~Hz}), 7.76-7.69(\mathrm{~m}, 1 \mathrm{H}, J=1.5 \mathrm{~Hz}), 7.69-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.53$
$(\mathrm{m}, 1 \mathrm{H}), 7.49(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.46-7.42(\mathrm{~m}, 5 \mathrm{H}), 7.23-7.17(\mathrm{~m}, 5 \mathrm{H}), 6.30(\mathrm{~s}, 1 \mathrm{H}), 5.83(\mathrm{t}$, $1 \mathrm{H}, J=8.9 \mathrm{~Hz}), 5.54(\mathrm{t}, 1 \mathrm{H}, J=8.7 \mathrm{~Hz}), 5.42(\mathrm{~d}, 1 \mathrm{H}, J=7.1 \mathrm{~Hz}), 5.36(\mathrm{~d}, 1 \mathrm{H}, J=8.9 \mathrm{~Hz}), 5.21$ $(\mathrm{d}, 1 \mathrm{H}, J=14.4 \mathrm{~Hz}), 4.92(\mathrm{~d}, 2 \mathrm{H}, J=10.6 \mathrm{~Hz}), 4.62(\mathrm{~s}, 1 \mathrm{H}), 4.27-4.07(\mathrm{~m}, 5 \mathrm{H}), 4.04-3.99(\mathrm{~m}$, $3 \mathrm{H}), 3.94-3.87(\mathrm{~m}, 1 \mathrm{H}), 3.83-3.79(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.58(\mathrm{~d}, 1 \mathrm{H}, J=7.1 \mathrm{~Hz}), 3.43-3.26$ (m overlapped with water signal, 2H), $3.07(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 2.89(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 2.69-2.56(\mathrm{~m}, 3 \mathrm{H}), 2.45(\mathrm{t}$, $2 \mathrm{H}, J=6.8 \mathrm{~Hz}), 2.38-2.30(\mathrm{~m}, 2 \mathrm{H}), 2.24-2.20(\mathrm{~m}, 4 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 1.84-1.76(\mathrm{~m}, 5 \mathrm{H}), 1.64(\mathrm{t}$, $1 \mathrm{H}, J=12.4 \mathrm{~Hz}), 1.54-1.41(\mathrm{~m}, 7 \mathrm{H}), 1.02(\mathrm{~s}, 3 \mathrm{H}), 1.00(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 202.3,173.9,172.13,171.94,170.8,170.2,169.63,169.50,169.1,168.84,168.74,168.3$, $167.9,166.4,165.2,157.3,139.4,138.7,137.3,134.8,134.3,133.45,133.33,132.7,131.4$, $129.95,129.93,129.56,129.54,128.73,128.65,128.55,128.29,128.14,127.83,127.71,127.65$, $127.4,83.6,80.2,76.7,75.3,74.68,74.54,74.50,72.5,70.7,70.4,57.4,56.1,53.98,53.86$, $52.17,52.13,46.1,44.9,42.9,42.1,41.9,40.1,39.9,38.2,36.5,35.7,34.4,29.5,28.7,27.6,26.3$, 25.3, 22.5, 21.4, 20.63, 20.52, 13.9, 9.7; IR (film) 3370, 3071, 2941, 1731, 1714, 1699, 1667, $1538,1421,1243,1135,1071 \mathrm{~cm}^{-1}$; MS (ESI) m / z calcd. for $\left[\mathrm{C}_{78} \mathrm{H}_{92} \mathrm{~N}_{11} \mathrm{O}_{24}\right]^{+}: 1566.63[\mathrm{M}+\mathrm{H}]^{+}$; found: 1566.6

Cyclo[DKP-f6-RGD]-PTX 13. Compound $\mathbf{1 3}$ was synthesized according to general procedure C ($43 \mathrm{mg}, 65 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 9.42(\mathrm{~s}, 1 \mathrm{H}), 9.25(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz})$, $8.74(\mathrm{~s}, 1 \mathrm{H}), 8.62(\mathrm{~s}, 1 \mathrm{H}), 8.45(\mathrm{~s}, 1 \mathrm{H}), 8.37(\mathrm{t}, 1 \mathrm{H}, J=5.7 \mathrm{~Hz}), 7.99-7.97(\mathrm{~m}, 2 \mathrm{H}), 7.87-7.84(\mathrm{~m}$, $3 \mathrm{H}), 7.73(\mathrm{t}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}), 7.66(\mathrm{t}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}), 7.56(\mathrm{tt}, 1 \mathrm{H}, J=7.3,2.0 \mathrm{~Hz}), 7.50-7.44$ $(\mathrm{m}, 7 \mathrm{H}), 7.25-7.15(\mathrm{~m}, 5 \mathrm{H}), 6.30(\mathrm{~s}, 1 \mathrm{H}), 5.83(\mathrm{t}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}), 5.53(\mathrm{t}, 1 \mathrm{H}, J=8.7 \mathrm{~Hz}), 5.41$ $(\mathrm{d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 5.35(\mathrm{~d}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}), 5.11(\mathrm{~d}, 1 \mathrm{H}, J=14.9 \mathrm{~Hz}), 4.98-4.90(\mathrm{t}, 2 \mathrm{H}), 4.64(\mathrm{~s}$, $1 \mathrm{H}), ~ 4.29-4.20(\mathrm{~m}, 3 \mathrm{H}), 4.17-4.08(\mathrm{~m}, 2 \mathrm{H}), 4.04-3.95(\mathrm{~m}, 3 \mathrm{H}), 3.93-3.79(\mathrm{~m}, 3 \mathrm{H}), 3.74-3.64(\mathrm{~m}$,
$1 \mathrm{H}), 3.59(\mathrm{~d}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}), 3.53-3.43(\mathrm{~m}, 1 \mathrm{H}), 3.26-3.19(\mathrm{~m}, 1 \mathrm{H}), 3.07(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.97(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 2.72-2.58(\mathrm{~m}, 4 \mathrm{H}), 2.56-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{t}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}), 2.40-2.28(\mathrm{~m}, 2 \mathrm{H}), 2.23(\mathrm{~s}$, $3 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 1.82-1.60(\mathrm{~m}, 7 \mathrm{H}), 1.52-1.46(\mathrm{~m}, 6 \mathrm{H}), 1.02(\mathrm{~s}, 3 \mathrm{H}), 1.00(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) δ 202.7, 172.0, 171.8, 170.3, 169.72, 169.57, 169.2, 168.79, 168.72, $166.8,166.4,165.2,157.3,139.5,137.4,135.2,134.3,133.5,133.32,133.28,132.7,131.5$, 129.9, 129.6, 128.7, 128.38, 128.21, 128.0, 127.7, 127.5, 83.6, 80.3, 76.7, 75.3, 74.69, 74.62, $74.49,70.7,70.4,57.2,54.4,54.1,51.98,51.92,46.10,45.97,43.0,41.9,40.9,39.7,37.8,36.6$, 34.4, 29.5, 28.7, 28.0, 26.4, 24.4, 22.6, 21.4, 20.7, 14.0, 9.8; IR (film) 3365, 3071, 2940, 1732, $1716,1699,1665,1537,1421,1243,1135,1071 \mathrm{~cm}^{-1}$; MS (ESI) m / z calcd. for $\left[\mathrm{C}_{78} \mathrm{H}_{92} \mathrm{~N}_{11} \mathrm{O}_{24}\right]^{+}$: $1566.63[\mathrm{M}+\mathrm{H}]^{+}$; found: 1566.6 .

PLASMA STABILITY ASSAYS. A 10 mM stock solution of cyclo[DKP-f3-RGD]-PTX 11 (MW 1566.62) was obtained by dissolving 2 mg of compound in $127.66 \mu \mathrm{~L}$ of DMSO. A further dilution 1:50 in pH 7.5 phosphate buffer (PBS) was performed ($10 \mu \mathrm{~L}$ of stock solution into 490 $\mu \mathrm{L}$ PBS) to obtain a $200 \mu \mathrm{M}$ solution; from this last solution, $25 \mu \mathrm{~L}$ were spiked into $475 \mu \mathrm{~L}$ of plasma (murine or human) to obtain the final concentration of $10 \mu \mathrm{M}$. Standards (lidocaine and 2-Piperidinoethyl-4-amino-5-chloro-2-methoxybenzoate) were tested at $2.5 \mu \mathrm{M}$ final concentration starting from a $500 \mu \mathrm{M}$ stock solution in DMSO, further diluted 1:10 into PBS and 1:20 into plasma.

Aliquots of $50 \mu \mathrm{~L}$ volume were taken at $0,15,30,60,120,180$ and 300 minutes of incubation at $37{ }^{\circ} \mathrm{C}$ and immediately quenched with $200 \mu \mathrm{~L}$ of a solution of Verapamil $250 \mathrm{ng} / \mathrm{mL}$ (internal standard) in acetonitrile. Samples were centrifuged for 20 min at 3000 rpm and supernatants
analyzed by UPLC (Waters) interfaced with a Premiere XE Triple Quadrupole (Waters). Eluents were Phase A: $95 \% \mathrm{H}_{2} \mathrm{O}, 5 \% \mathrm{CH}_{3} \mathrm{CN}+0.1 \% \mathrm{HCOOH}$ and Phase B: $5 \% \mathrm{H}_{2} \mathrm{O}, 95 \% \mathrm{CH}_{3} \mathrm{CN}+$ $0.1 \% \mathrm{HCOOH}$. Waters UPLC: flow $0.6 \mathrm{~mL} / \mathrm{min}$, column BEH C18, $50 \times 2.1 \mathrm{~mm} 1.7 \mu \mathrm{~m}$ at $50^{\circ} \mathrm{C}$, vol inj. $5 \mu \mathrm{~L}$. Samples were analyzed in multiple reaction monitoring (MRM) conditions: ESI Positive, Desolvation Temperature $450{ }^{\circ} \mathrm{C}$, Desolvation Gas $900 \mathrm{~L} / \mathrm{h}$, Cone Gas $90 \mathrm{~L} / \mathrm{h}$, Collision Gas $0.2 \mathrm{~L} / \mathrm{h}$. Results are presented as Mean \pm S.D., $\mathrm{n}=2$ for standards, $\mathrm{n}=3$ for cyclo[DKP-f3-RGD]-PTX 11.

CELL SENSITIVITY STUDIES. The human ovarian carcinoma IGROV-1 cell line, ${ }^{46}$ the cisplatin-resistant IGROV-1/Pt1 subline ${ }^{46}$ the human ovarian carcinoma cell line SKOV3, the human pancreatic carcinoma cell lines PANC-1 and MIA-PaCa2 were cultured in Dulbecco's Modified Eagle Medium (DMEM) medium; the human osteosarcoma U2-OS cell line was grown in Mc Coy's 5A medium; HDFC cells were cultured in DMEM-F12 medium. In all cases, the medium was supplemented with 10% fetal calf serum. The cell sensitivity to drugs was measured by using the growth-inhibition assay based on cell counting. Cells were seeded in duplicates into 6-well plates and exposed to drug 24 h later. Paclitaxel and the studied compounds were dissolved in DMSO and then added to culture medium. DMSO concentration in medium never exceeded 0.25%. After 72 h of drug incubation, cells were harvested for counting with a cell counter (Z 1 Beckman Coulter counter). IC_{50} is defined as the drug concentration producing 50% decrease of cell growth. At least five independent experiments were performed.

ANALYSIS OF INTEGRIN LEVELS. The expression of integrins was measured by flow cytometry, following optimization of antibody concentration. Exponentially growing cells were
harvested and incubated fro 30 min at $4{ }^{\circ} \mathrm{C}$ with anti human $\alpha_{v} \beta_{3}$ or $\alpha_{\mathrm{v}} \beta_{5}$ antibodies or isotypic controls (Millipore, Temecula, CA; Chemicon International). Cells were than washed and samples were immediately used for flow cytometric analysis (FACScan, Becton-Dickinson). Expression of integrins was expressed as ratio between the mean fluorescence intensity obtained in cells incubated with anti-integrin antibodies divided by that of cells incubated with isotypic control.

IN VIVO ANTITUMOR ACTIVITY STUDIES. All experiments of were carried out using female athymic Swiss nude mice, 8-10 weeks-old (Charles River, Calco, Italy). Mice were maintained in laminar flow rooms keeping temperature and humidity constant. Mice had free access to food and water. Experiments were approved by the Ethics Committee for Animal Experimentation of the Istituto Nazionale Tumori of Milan according to institutional guidelines. The IGROV-1/Pt1 human tumor xenograft, derived from cultures of the corresponding ovarian carcinoma cell line, ${ }^{46}$ was used. Exponentially growing cells ($10^{7} /$ mouse) were s.c. injected into the right flank of athymic nude mice and the tumor line was achieved by serial s.c. passages of fragments of re-growing tumors into healthy mice. Groups of four mice bearing bilateral s.c. tumors were employed. Tumor fragments were implanted on day 0 and tumor growth was followed by biweekly measurements of tumor diameters with a Vernier caliper. Tumor volume (TV) was calculated according to the formula: $\operatorname{TV}\left(\mathrm{mm}^{3}\right)=d^{2} \mathrm{xD} / 2$ where d and D are the shortest and the longest diameter, respectively. Compounds were delivered i.v. and administered every 4 days for 4 times ($q 4 d x 4$). Treatment started three days after tumor implant, when tumors were just palpable. The efficacy of the drug treatment was assessed as: 1) Tumor volume inhibition percentage (TVI\%) in treated versus control mice, calculated as: TVI $\%=100-(\mathrm{mean}$

TV treated/mean TV control x 100); 2) $\log _{10}$ cell kill (LCK) calculated by the formula: $\mathrm{LCK}=$ (T-C)/3.32xDT where T and C are the mean times (days) required for treated (T) and control (C) tumors, respectively, to reach an established TV and DT is the doubling time of control tumors, obtained from semilog best-fit curves of mean tumor volumes plotted against time; 3) Complete regression (CR), i.e. disappearance of the tumor lasting at least 10 days after the end of treatments. Tumors not regrown at the end of experiment were considered no evidence of disease (NED). The toxicity of the drug treatment was determined as body weight loss (BWL) and lethal toxicity (D / T, dead/treated mice). The highest body weight loss percentage induced by treatments is reported in the Tables. Deaths occurring in treated mice before the death of the first control mouse were ascribed to toxic effects. Two-sided Student's t test was used for statistical comparison of tumor volumes in control over treated mice. For in vivo studies, Paclitaxel was dissolved in a mixture of ethanol and cremophor ELP (50+50\%) and kept at $4{ }^{\circ} \mathrm{C}$. At treatment the drug was diluted in 90% of cold saline after magnetic stirring and administered i.v.. Cyclo[DKP-f3-RGD]-PTX 11 was dissolved and administered like Paclitaxel at room temperature.

IMMUNOHISTOCHEMISTRY. Tumor xenografts and adjacent tissues were excised and formalin fixed and paraffin embedded. Four $\mu \mathrm{m}$ sections from each tumor xenograft were routinely stained with Hematoxylin-Eosin (HE) and evaluated under a light microscope. Mitoses were evaluated in 3 randomly selected 400x fields within the bulk of the xenograft, avoiding areas of necrosis and hemorrhage. The total number of mitoses and the mean value for each sample were evaluated. Furthermore, mitoses were classified as "normal" and "aberrant", considering in this latter class both small condensed hyperchromatic nuclei and large cells
composed by nuclear envelope around individual clusters of missegregated chromosomes (mitotic catastrophe), and the ratio between these two classes was evaluated. The analysis of mitoses was performed in a blind fashion. Statistical analysis of the obtained data was carried out with Kruskal Wallis test followed by Dunn's multiple comparison test using GraphPad Prism (GraphPad Software, Inc.).

ASSOCIATED CONTENT

Supporting Information

General information for the synthesis, biological procedures, detailed experimental procedures for the synthesis of compounds $\mathbf{1 0 - 6 8} .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding authors

* For C.G.: phone, +39-02-50314091; fax, +39-02-50314072; e-mail, cesare.gennari@unimi.it. For U.P.: phone, +39-031-2386444; fax, +39-031-2386449; e-mail, umberto.piarulli@uninsubria.it.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGEMENTS

We thank Milan University for PhD Fellowships (to M.M. and R.C.) and Indena S.p.A. for a generous gift of Paclitaxel. We also gratefully acknowledge Ministero dell'Università e della Ricerca for financial
support (PRIN project: Synthesis and biomedical applications of tumor-targeting peptidomimetics). U.P. thanks Fondazione CARIPLO for a research grant (Project: RedDrug-Train).

Abstract

ABBREVIATIONS USED

DKP, diketopiperazine; Mtr, 4-methoxy-2,3,6-trimethylbenzenesulphonamide; HATU, O-(7-azabenzotriazol-1-yl)- $N, N, N^{\prime}, N^{\prime}$-tetramethyluronium hexafluorophosphate; Tol, toluene; TEA, triethylamine; HOAT, 1-hydroxy-7-azabenzotriazole; DIAD, diisopropyl azodicarboxylate; BOC-ON, 2-(Boc-oxyimino)-2-phenylacetonitrile; DCU, N,N'-dicyclohexylurea; PyBrOP, bromotripyrrolidinophosphonium hexafluorophosphate; DPPA, diphenyl phosphoryl azide; EDT, 1,2-ethanedithiol; TIPS, triisopropylsilane; DIC, N, N^{\prime}-diisopropylcarbodiimide; sulfo-NHS, N hydroxysulfosuccinimide sodium salt; PTX, Paclitaxel; RP-HPLC, reverse phase high-pressure liquid chromatography; HDFC, human dermal fibroblast cells; TVI, tumor volume inhibition; CR, complete response; NED, no evidence of disease; LCK, $\log _{10}$ cell kill; BWL, body weight loss; D/T, dead/treated mice; CPD, compound; MRM, multiple reaction monitoring; DMEM, Dulbecco's modified eagle medium; TV, tumor volume.

REFERENCES

(1) Broxterman, H. J.; Lankelma, J.; Hoekman, K. Resistance to cytotoxic and anti-angiogenic anticancer agents: similarities and differences. Drug Resist. Updates. 2003, 6, 111-127.
(2) Siepmann, J.; Siegel, R. A.; Rathbone, M. J. Fundamentals and applications of controlled release drug delivery. Springer: New York, 2012; pp 493-516.
(3) (a) Lammers, T.; Kiessling, F.; Hennink W. E.; Storm G. Drug targeting to tumors: Principles, pitfalls and (pre-) clinical progress. J. Controlled Release 2012, 161, 175-187. (b)

Kratz, F.; Müller, I. A.; Ryppa C.; Warnecke A. Prodrug Strategies in Anticancer Chemotherapy. ChemMedChem. 2008, 3, 20-53.
(4) (a) Low, P. S. The Optimal Strategy for Drug Targeting. Mol. Pharmacol. 2007, 4, 629630. (b) Aina, O. H.; Liu, R. W.; Sutcliffe J. L.; Marik, J.; Pan, C. X.; Lam, K. S. From Combinatorial Chemistry to Cancer-Targeting Peptides. Mol. Pharmacol. 2007, 4, 631-651.
(5) (a) Ruoslahti, E.; Bhatia, S. N.; Sailor, M. J. Targeting of drugs and nanoparticles to tumors. J. Cell Biol. 2010, 188, 759-768. (b) Mahato, R.; Tai, W.; Cheng, K. Prodrugs for improving tumor targetability and efficiency. Adv. Drug Delivery. Rev. 2011, 63, 659-670.
(6) Lu, X.; Lu, D.; Scully, M.; Kakkar, V. The role of integrins in cancer and the development of anti-integrin therapeutic agents for cancer therapy. Perspect. Med. Chem. 2008, 2, 57-73.
(7) Barczyk, M.; Carracedo, S.; Gullberg D. Integrins. Cell Tissue Res. 2010, 339, 269-280.
(8) Hynes, R. O. Integrins: bidirectional, allosteric signaling machines. Cell 2002, 110, 673687.
(9) (a) Shimaoka, M.; Springer, T. A. Therapeutic antagonists and conformational regulation of integrin function. Nature Rev. Drug Discov. 2003, 2, 703-716. (b) Rathinam, R.; Alahari, S. K. Important role of integrins in the cancer biology. Cancer Metastasis Rev. 2010, 29, 223-237.
(10) Plow, E. F.; Haas, T. A.; Zhang, L.; Loftus, J.; Smith, J. W. Ligand Binding to Integrins. J. Biol. Chem. 2000, 275, 21785-21788.
(11) Dechantsreiter, M. A.; Planker, E.; Mathä, B.; Lohof, E.; Hölzemann, G.; Jonczyk, A.; Goodman, S. L.; Kessler, H. N-Methylated cyclic RGD peptides as highly active and selective $\alpha_{v} \beta_{3}$ integrin antagonists. J. Med. Chem. 1999, 42, 3033-3040.
(12) Gottschalk, K. E.; Kessler, H. The structures of integrins and integrin-ligand complexes: implications for drug design and signal transduction. Angew. Chem. Int. Ed. 2002, 41, 39673774.
(13) Mas-Moruno, C.; Rechenmacher, F.; Kessler, H. Cilengitide: the first anti-angiogenic small molecule drug candidate design, synthesis and clinical evaluation. Anti-Cancer Agents Med. Chem. 2010, 10, 753-768.
(14) Xiong, J.-P.; Stehle, T.; Zhang, R.; Joachimiak, A.; Frech, M.; Goodman, S. L.; Arnaout, M. A. Crystal structure of the extracellular segment of integrin $\alpha_{V} \beta_{3}$ in complex with an Arg-Gly-Asp ligand. Science 2002, 296, 151-155.
(15) Auzzas, L.; Zanardi, F.; Battistini, L.; Burreddu, P.; Carta, P.; Rassu, G.; Curti, C.; Casiraghi G. Targeting $\alpha_{V} \beta_{3}$ integrin: design and applications of mono- and multifunctional RGD-based peptides and semipeptides. Curr. Med. Chem. 2010, 17, 1255-1299.
(16) (a) Ressurreicao, A. S. M.; Vidu, A.; Civera, M.; Belvisi, L.; Potenza, D.; Manzoni, L.; Ongeri, S.; Gennari, C.; Piarulli, U. Cyclic RGD-Peptidomimetics containing bifunctional diketopiperazine scaffolds as new potent integrin ligands. Chem.-Eur. J. 2009, 15, 12184-12188.
(b) Marchini, M.; Mingozzi, M.; Colombo, R.; Guzzetti, I.; Belvisi, L.; Vasile, F.; Potenza, D.; Piarulli, U.; Arosio, D.; Gennari, C. Cyclic RGD-Peptidomimetics containing bifunctional diketopiperazine scaffolds as new potent integrin ligands. Chem.-Eur. J. 2012, 18, 6195-6207.
(17) (a) Reynolds, A. R.; Hart, I. R.; Watson, A. R.; Welti, J. C.; Silva, R. G.; Robinson, S. D.; Da Violante, G.; Gourlaouen, M.; Salih, M.; Jones, M. C.; Jones, D. T.; Saunders, G.; Kostourou, V.; Perron-Sierra, F.; Norman, J. C.; Tucker, G. C.; Hodivala-Dilke K. M. Stimulation of tumor growth and angiogenesis by low concentrations of RGD-mimetic integrin inhibitors. Nat. Med. 2009, 15, 392-400. (b) Weis, S. M.; Stupack, D. G.; Cheresh, D. A. Agonizing Integrin Antagonists?. Cancer Cell 2009, 15, 359-361. (c) Shabbir, S.H.; Eisenberg, J.L.; Mrksich, M. An inhibitor of a cell adhesion receptor stimulates cell migration. Angew. Chem. Int. Ed. 2010, 49, 7706-7709. (d) Robinson, S. D.; Hodivala-Dilke, K. M. The role of $\beta 3$-integrins in tumor angiogenesis: context is everything. Curr. Opin. Cell Biol. 2011, 23, 630-637.
(18) Chen, K.; Chen, X. Integrin Targeted Delivery of Chemotherapeutics. Theranostics 2011, 1, 189-200.
(19) (a) Arap, W.; Pasqualini, R.; Ruoslahti, E. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 1998, 279, 377-80. (b) Kim, J. W.; Lee, H. S. Tumor targeting by doxorubicin-RGD-4C peptide conjugate in an orthotopic mouse hepatoma model. Int. J. Mol. Med. 2004,14, 529-535.
(20) Burkhart, D. J.; Kalet, B. T.; Coleman, M. P.; Post, G. C.; Koch, T. H. Doxorubicinformaldehyde conjugates targeting $\alpha v \beta 3$ integrin. Mol. Cancer Ther. 2004, 3, 1593-604.
(21) Ryppa, C.; Mann-Steinberg, H.; Fichtner, I.; Weber, H.; Satchi-Fainaro, R.; Biniossek, M.L.; Kratz, F. In vitro and in vivo evaluation of doxorubicin conjugates with the divalent peptide $\mathrm{E}-\left[\mathrm{c}(\mathrm{RGDfK})_{2}\right]$ that targets integrin $\alpha_{v} \beta_{3}$. Bioconjugate Chem. 2008, 19, 1414-22.
(22) Mukhopadhyay, S.; Barnés, C. M.; Haskel, A.; Short, S. M.; Barnes, K. R.; Lippard, S. J. Conjugated platinum(IV)-peptide complexes for targeting angiogenic tumor vasculature. Bioconjugate Chem. 2008, 19, 39-49.
(23) (a) Dal Pozzo, A.; Ni, M.H.; Esposito, E.; Dallavalle, S.; Musso, L.; Bargiotti, A.; Pisano, C.; Vesci, L.; Bucci, F.; Castorina, M.; Fodera, R.; Giannini, G.; Aulicino, C.; Penco, S. Novel tumor-targeted RGD peptide-camptothecin conjugates: Synthesis and biological evaluation. Bioorg. Med. Chem. Lett. 2010, 18, 64-72. (b) Alloatti, D.; Giannini, G.; Vesci, L.; Castorina, M.; Pisano, C.; Badaloni, E.; Cabri, W. Camptothecins in tumor homing via an RGD sequence mimetic. Bioorg. Med. Chem. Lett. 2012, 22, 6509-6512.
(24) (a) Chen, X.; Plasencia, C.; Hou, Y.; Neamati, N. Synthesis and biological evaluation of dimeric RGD peptide-paclitaxel conjugate as a model for integrin-targeted drug delivery. J. Med. Chem. 2005, 48, 1098-106 (corrigendum J. Med. Chem, 2005, 48, 5874). (b) Cao, Q.; Li, Z.-B.; Chen, K.; Wu, Z.; He, L.; Neamati, N.; Chen, X. Evaluation of biodistribution and anti-tumor effect of a dimeric RGD peptide-paclitaxel conjugate in mice with breast cancer. Eur. J. Nucl. Med. Mol. Imaging. 2008, 35, 1489-98.
(25) Ryppa, C.; Mann-Steinberg, H.; Biniossek, M.L.; Satchi-Fainaro, R.; Kratz, F. In vitro and in vivo evaluation of a paclitaxel conjugate with the divalent peptide $\mathrm{E}-\left[\mathrm{c}(\mathrm{RGDfK})_{2}\right]$ that targets integrin $\alpha_{V} \beta_{3}$. Int. J. Pharm. 2009, 368, 89-97.
(26) Marchini, M.; Mingozzi, M.; Colombo, R.; Gennari, C.; Durini, M.; Piarulli, U. Selective O -acylation of unprotected N -benzylserine methyl ester and O, N-acyl transfer in the formation of cyclo[Asp-Ser] diketopiperazines. Tetrahedron 2010, 66, 9528-9531.
(27) Choi, H.; Aldrich, J. V. Comparison of methods for the Fmoc solid-phase synthesis and cleavage of a peptide containing both tryptophan and arginine. Int. J. Pept. Protein Res. 1993, 42, 58-63.
(28) Deutsch, H. M.; Glinski, J. A.; Hernandez, M.; Haugwitz, R. D.; Narayanan, V. L.; Suffness, M.; Zalkow, L. H. Synthesis of congeners and prodrugs. 3. Water-soluble prodrugs of taxol with potent antitumor activity. J. Med. Chem. 1989, 32, 788-792.
(29) (a) Buchegger, F.; Kosinski, M.; Viertl, D.; Poitry-Yamate, C.; Baechler, S.; Prior, J.; Tumor localization and mouse-derived dosimetry projection for Ga-68-NODAGA-RGD PET. J. Nucl. Med. Meeting Abstracts 2011, 52, 1487. (b) Ye, Y.; Zhu, L.; Ma, Y.; Niu, G.; Chen X. Synthesis and evaluation of new iRGD peptide analogs for tumor optical imaging. Bioorg. Med. Chem. Lett. 2011, 21, 1146-1150.
(30) Liu, S.; Liu, Z.; Chen, K.; Yan, Y.; Watzlowik, P.; Wester, H. J.; Chin, F. T.; Chen, X.
${ }^{18}$ F-Labeled galacto and PEGylated RGD dimers for PET imaging of $\alpha_{v} \beta_{3}$ integrin expression. Mol. Imaging Biol. 2010, 12, 530-538.
(31) (a) Fani, M.; Psimadas, D.; Zikos, C.; Xanthopoulos, S.; Loudos, G. K.; Bouziotis, P.; Varvarigou, A. D. Comparative Evaluation of Linear and Cyclic ${ }^{99 m}$ Tc-RGD Peptides for targeting of integrins in tumor angiogenesis. Anticancer Res. 2006, 26, 431-434. (b) Lang, L.; Li, W.; Guo, N.; Ma, Y.; Kiesewetter, D. O.; Niu, G.; Chen, X. Comparison Study of $\left[{ }^{18}\right.$ F]FAl-NOTA-PRGD2, $\left[{ }^{18} \mathrm{~F}\right]$ FPPRGD2, and $\left[{ }^{68} \mathrm{Ga}\right] \mathrm{Ga}-$ NOTA-PRGD2 for PET Imaging of U87MG Tumors in Mice. Bioconjugate Chem. 2011, 22, 2415-2422. (c) Li, W.; Lang, L.; Niu, G.; Guo, N.; Ma, Y.; Kiesewetter, D. O.; Shen, B.; Chen, X. N-Succinimidyl 4-[${ }^{18}$ F]-
fluoromethylbenzoate-labeled dimeric RGD peptide for imaging tumor integrin expression. Amino Acids 2012, 43, 1349-1357.
(32) (a) Janssen, M. L.; Oyen, W. J.; Dijkgraaf, I.; Massuger, L. F.; Frielink, C.; Edwards, D. S.; Rajopadhye, M.; Boonstra, H.; Corstens, F. H.; Boerman, O. C. Tumor targeting with radiolabeled $\alpha_{v} \beta_{3}$ integrin binding peptides in a nude mouse model. Cancer Res. 2002, 62, 61466151. (b) Lanzardo, S.; Conti, L.; Brioschi, C.; Bartolomeo, M. P.; Arosio, D.; Belvisi, L.; Manzoni, L.; Maiocchi, A.; Maisano, F.; Forni, G. A new optical imaging probe targeting $\alpha_{v} \beta_{3}$ integrin in glioblastoma xenografts. Contrast Media Mol. Imaging 2011, 6, 449-458.
(33) Haubner, R.; Schmitt, W.; Hö1lzemann, G.; Goodman, S. L.; Jonczyk, A.; Kessler, H. Cyclic RGD Peptides Containing β-Turn Mimetics. J. Am. Chem. Soc. 1996, 118, 7881-7891.
(34) Manzoni, L.; Belvisi, L.; Arosio, D.; Civera, M.; Pilkington-Miksa, M.; Potenza, D.; Caprini, A.; Araldi, E. M. V.; Monferrini, E.; Mancino, M.; Podestà, F.; Scolastico, C. Cyclic RGD-including functionalized azabicycloalkane amino acids as potent integrin antagonists for tumor targeting. ChemMedChem 2009, 4, 615-632, and references cited therein.
(35) Fu, Y.; Li, S.; Zu, Y.; Yang, G.; Yang, Z.; Luo, M.; Jiang, S.; Wink, M.; Efferth, T. Medicinal chemistry of paclitaxel and its analogues. Curr. Med. Chem. 2009, 16, 3966-3985.
(36) Recently, a azabicycloalkane-RGD bound to Paclitaxel via a cleavable diglycolyl ester linker at C2' was reported to provide promising in vitro and in vivo antitumor activity, see: Pilkington-Miksa, M.; Arosio, D.; Battistini, L.; Belvisi, L.; De Matteo, M.; Vasile, F.; Burreddu, P.; Carta, P.; Rassu, G.; Perego, P.; Carenini, N.; Zunino, F.; De Cesare, M.; Castiglioni, V.; Scanziani, E.; Scolastico, C.; Casiraghi, C.; Zanardi, F.; Manzoni, L. Design, Synthesis and

Biological Evaluation of Novel cRGD-Paclitaxel Conjugates for Integrin-Assisted Drug Delivery. Bioconjugate Chem. 2012, 23, 1610-1622.
(37) (a) Matson, D. R.; Stukenberg, P. T. Spindle poisons and cell fate: a tale of two pathways. Molecular interventions 2011, 11, 141-150. (b) Portugal, J.; Mandilla, S.; Bataller, M. Mechanisms of drug-induced mitotic catastrophe in cancer cells. Current Pharmaceutical Design 2010, 16, 69-78; (c) Roninson, I. B.; Broude, E. V.; Chang, B. D. If not apoptosis, then what? Treatment-induced senescence and mitotic catastrophe in tumor cells. Drug Resistance Updates 2001, 4, 303-313.
(38) Huang, Y.; Dalton, D. R.; Carroll, P. J. The Efficient, Enantioselective Synthesis of Aza Sugars from Amino Acids. 1. The Polyhydroxylated Pyrrolidines. J. Org. Chem. 1997, 62, 372376.
(39) Webster, K. L.; Maude, A. B.; O'Donnell, M. E.; Mehrotra, A. P.; Gani, D. Design and preparation of serine-threonine protein phosphatase inhibitors based upon the nodularin and microcystin toxin structures. Part 3. J. Chem. Soc. Perkin Trans. 1 2001, 1673-1695.
(40) Pirrung, M. C.; Shuey, S. W. Photoremovable Protecting groups for phosphorylation of chiral alcohols. Asymmetric synthesis of phosphotriesters of (-)-3',5'-dimethoxybenzoin. J. Org. Chem. 1994, 59, 3890-3897.
(41) Rosenberg, S. H.; Spina, K. P.; Woods, K. W.; Polakowski, J.; Martin, D. L.; Yao, Z.; Stein, H. H.; Cohen, J.; Barlow, J. L.; Egan D. A.; Tricarico, K. A.; Baker, W. R.; Kleinert, H. D. Studies directed toward the design of orally active renin inhibitors, 1: some factors influencing the absorption of small peptides. J. Med. Chem. 1993, 36, 449-459.
(42) Gu, K.; Bi, L.; Zhao, M.; Wang, C.; Ju, J.; Peng, S. Toward the development of chemoprevention agents. Part 1: Design, synthesis, and anti-inflammatory activities of a new class of 2,5-disubstituted-dioxacycloalkanes. Bioorg. Med. Chem. 2007, 15, 6273-6290.
(43) Humphrey, J. M.; Bridges, R. J.; Hart, J. A.; Chamberlin, A. R. 2,3Pyrrolidinedicarboxylates as Neurotransmitter Conformer Mimics: Enantioselective Synthesis via Chelation-Controlled Enolate Alkylation. J. Org. Chem. 1994, 59, 2467-2472.
(44) Narukawa, Y.; Juneau, K. N.; Snustad, D.; Miller, D. B.; Hegedus, L. S. Synthesis of optically active β-lactams by the photolytic reaction of imines with optically active chromium carbene complexes. 2. Synthesis of 1-carbacephalothin and 3-ANA relays. J. Org. Chem. 1992, 57, 5453-5462.
(45) Still, W. C.; Kahn, M.; Mitra, A. Rapid Chromatographic Techniques for Preparative Separation with Moderate Resolution. J. Org. Chem. 1978, 43, 2923-2925.
(46) (a) Perego, P.; Romanelli, S.; Carenini, N.; Magnani, I.; Leone, R.; Bonetti, A.; Paolicchi, A.; Zunino, F. Ovarian cancer cisplatin-resistant cell lines: Multiple changes including collateral sensitivity to taxol. Ann. Oncol. 1998, 9, 1-8. (b) Perego, P.; Giarola, M.; Righetti, S. C.; Supino, R.; Caserini, C.; Delia, D.; Pierotti, M. A.; Miyashita, T.; Reed, J. C.; Zunino, F. Association between cisplatin resistance and mutation of p53 gene and reduced bax expression in ovarian carcinoma cell systems. Cancer Res. 1996, 56, 556-562.

Table of Contents graphic

MeOOC

$220 \times 48 \mathrm{~mm}(300 \times 300$ DPI $)$

$$
\begin{aligned}
& 1=\text { cyclo[DKP-1-RGD] }=3 S, 6 S, \mathrm{R}^{1}=\mathrm{H}, \quad \mathrm{R}^{2}=\mathrm{Bn} \\
& \mathbf{2}=\text { cyclo[DKP-2-RGD] }=3 R, 6 S, \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Bn} \\
& \mathbf{3}=\text { cyclo[DKP-3-RGD] }=3 S, 6 R, \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Bn} \\
& \mathbf{4}=\text { cyclo[DKP-4-RGD] }=3 R, 6 S, \mathrm{R}^{1}=\mathrm{Bn}, \mathrm{R}^{2}=\mathrm{H} \\
& 5=\text { cyclo[DKP-5-RGD] }=3 R, 6 S, \mathrm{R}^{1}=\mathrm{Bn}, \mathrm{R}^{2}=\mathrm{Bn} \\
& \mathbf{6}=\text { cyclo[DKP-6-RGD] }=3 S, 6 R, \mathrm{R}^{1}=\mathrm{Bn}, \mathrm{R}^{2}=\mathrm{H} \\
& 7 \mathrm{a}=\text { cyclo[DKP-7-RGD] }=3 S, 6 R, \mathrm{R}^{1}=\mathrm{Bn}, \mathrm{R}^{2}=\mathrm{Bn} \\
& 7 \mathrm{~b}=\text { cyclo[DKP-7-RGD] }=3 S, 6 R, \mathrm{R}^{1}=\mathrm{Bn}, \mathrm{R}^{2}=\mathrm{Bn}
\end{aligned}
$$

$130 \times 72 \mathrm{~mm}(300 \times 300 \mathrm{DPI})$

$149 \times 112 \mathrm{~mm}(300 \times 300 \mathrm{DPI})$

$10=$ cyclo[DKP-f2-RGD]-PTX

12 = cyclo[DKP-f4-RGD]-PTX

11 = cyclo[DKP-f3-RGD]-PTX

$63 \times 16 \mathrm{~mm}(600 \times 600 \mathrm{DPI})$

68 = cyclo[DKP-f3-RGD]-hemisuccinamide

$84 \times 80 \mathrm{~mm}(300 \times 300$ DPI)

Page 57 of 67 normal mitosis Journal of Medicinal Chemistry aberrant mitosis

Journal of Medicinal Chemfatys 58 of 67

1 2 3 4

Page 59defífinal of Medicinal Chemistry

Journal of Medicinal Cherfiadijej60 of 67

Page 61 dbainal of Medicinal Chemistry

$106 \times 17 \mathrm{~mm}(300 \times 300 \mathrm{DPI})$

$251 \times 93 \mathrm{~mm}(300 \times 300$ DPI)

$220 \times 121 \mathrm{~mm}(300 \times 300$ DPI)

[^1]

[^0]: Journal of Medicinal Chemistry is published by the American Chemical Society. 1155
 Sixteenth Street N.W., Washington, DC 20036
 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

[^1]: $249 \times 159 \mathrm{~mm}(300 \times 300$ DPI)

