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Short peptides can show high affinity for specific receptors overexpressed on tumor cells.
Some of these are already used in cancerology as diagnostic tools and others are in clinical
trials for therapeutic applications. Therefore, peptides exhibit great potential as a diagnos-
tic tool but also as an alternative or an additional antitumoral approach upon the covalent
attachment of a therapeutic moiety such as a radionuclide or a cytotoxic drug. The chem-
istry offers flexibility to graft onto the targeting-peptide either fluorine or iodine directly,
or metallic radionuclides through appropriate chelating agent. Since short peptides are
straightforward to synthesize, there is an opportunity to further improve existing peptides
or to design new ones for clinical applications. However, several considerations have to
be taken into account to optimize the recognition properties of the targeting-peptide to its
receptor, to improve its stability in the biological fluids and its residence in the body, or
to increase its overall therapeutic effect. In this review, we highlight the different aspects
which need to be considered for the development of an efficient peptide receptor-mediated
radionuclide therapy in different neoplasms.
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INTRODUCTION
Hundreds of receptors are expressed ubiquitously at the cell surface
and some others are overexpressed only on specific cells depending
on their function but also on their biological state. For instance
during tumorigenesis of urogenital neoplasms, receptors such as
somatostatin, bombesin, cholecystokinin, epidermal growth fac-
tor receptor (EGFR), human epidermal growth factor receptor 2
(HER2), several types of integrin receptors, or anti-Müllerian hor-
mone receptor type II (AMHR-II), show a higher expression rate
on cancer cells than on normal cells. Therefore they represent very
attractive targets for concentrating radionuclides (or drugs) at the
tumor sites either for diagnostic or therapeutic applications. Mon-
oclonal antibodies (mAbs) were recognized to be very appropriate
owing to the specific interaction with their ligand and became
very popular as potential “magic bullets” to be used in cancer (1).
Tumor targeting radiolabeled mAbs use in vivo dates from the 50s
and 20 years later the first antibody-based clinical tumor local-
ization was reported (2). They have later been approved for the
localization and staging of colorectal, ovarian, breast, and prostate

Abbreviations: BAT, 6-[p-(bromoacetamido)benzyl]-1,4,8,11-tetraazacyclotetra
decane-1,4,8,11-tetraacetic acid; CB-TE2A, 1,4,8,11-tetraazabicyclo[6.6.2]hexa
decane; CPTA, 4-[(1,4,8,11-tetraazacyclotetradec-1-yl)methyl]benzoic acid; DOTA,
1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid; DTPA, diethylenetriamine
pentaacetic acid; EDTA, ethylenediaminetetraacetic acid; NOTA, 1,4,7-triaza
cyclononane- 1,4,7-triacetic acid; PBCA, 1-[(1,4,7,10,13-pentaazacyclopentadecyl-
1-yl)methyl]benzoicacid; TETA, 1,4,8,11-tetraazacyclotetradecane-1,4,8,11-
tetraacetic acid.

cancer while other antibodies (Zevalin®, Bexxar®) have been
approved for the treatment of non-Hodgkin’s lymphoma. The
concept of mAbs as targeted drug delivery systems can overcome
many of the non-specific side effects associated with traditional
cancer chemo- or radiotherapy. However, the cost of antibody-
mediated immunodetection or immunotherapy remains rather
high since their production requires specific and complex expres-
sion systems and their extraction, purification, and derivatization
follow strict procedures and regulations to fit with the require-
ments of a subsequent therapeutic use in human. Alternatively
several short peptides from 3 to 12 amino acids with appropriate
affinity and specificity for various targeted receptors have been dis-
covered over the last 40 years. Peptides present a molecular weight
generally around 1500 Da,have cheap production costs, are quickly
produced using automated synthesis, are not immunogenic, have
normally deep solid tumor penetration, but also low bone marrow
accumulation and relatively fast blood clearance (3).

The idea to use radiolabeled-peptides to target specific cells
dates back to the 70s when a peptide with a good affinity for the
melanotropin receptor was highly tritiated thus opening the way
to therapeutic labeling with radionuclides. These peptides were
later applied to in vitro and in vivo peptide receptor-mediated
radiotherapy (4). However the results were disappointing because
of a weak in vivo stability and a low rate of radiotoxicity at the
tumor site to abolish tumor growth (3). In the early 80s, in depth
structure-activity relationship studies performed on the somato-
statin receptor led to the design of several reduced-size analogs
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which were the first peptides based radiopharmaceutical for tumor
scintigraphy (5, 6). These peptides were also later used in radio-
therapy upon grafting to a radionuclide (7). In this latter case, the
use of small radiolabeled-peptides was indicated for patients with
inoperable or metastasized tumors.

Analogs of amino acids can be then integrated instead of natural
amino acids and then tested for their biological stability or their
binding affinity to the receptor. Cyclization or multimerization of
the targeting-peptide can be further evaluated, and the benefit of
grafting various additional elements such as polyethylene glycol
(PEG) to improve the overall pharmacokinetic properties of the
targeting unit can be verified. Once the design of the targeting-
peptide itself has been completed, the loading of the toxic moiety
remains to be considered. This toxic moiety could be a cytotoxic
drug or a radionuclide used either in a chemotherapy or in a radio-
therapy context, respectively. The choice of the chelator, the spacer
arm between the targeting-peptide, and the chelator and other
modifications of the global targeting unit should be also evaluated
since several reports suggested significant changes in the behavior
of closely related targeting molecules (8–10). The final aim remains
indeed to reach the tumor site with the best efficacy while strongly
reducing the residence/accumulation in the other organs, includ-
ing liver and kidneys. In this review, we highlight the main criteria
susceptible to improve the design of targeting-peptides dedicated
ultimately to induce the most efficient receptor-mediated radio-
therapy in various neoplasms such as breast, ovarian, prostate,
testicular, and urinary organs cancers as examples.

SELECTION OF PEPTIDES FOR A SPECIFIC
RECEPTOR-MEDIATED RECOGNITION
Most of the tumor targeting-peptides have been selected mainly
by three methods [for a review: (11, 12)]. The first method con-
sists in the identification of interacting peptide sequences from
random phage display libraries. Basically, phages showing both
good affinity and specificity for a given receptor are selected fol-
lowing successive rounds of selection. A sequencing step allows
afterward the identification of the binding sequence, if any. One
of the most known example reported 20 years ago and identifying
this way is certainly the tripeptide RGD sequence which shows
a peculiar affinity for the alpha-v beta-1 integrin receptor (13).
Affinity of the RGD sequence for alpha-v beta-3 and alpha-v beta-
5 integrin receptors has been also identified. The RGD sequence
is present in various circulating proteins including fibronectin,
vitronectin, osteopontin, collagen, thrombospondin, fibrinogen,
and von Willebrand factor and all these circulating proteins bind
individually at least one member of the integrin receptor fam-
ily upon direct interactions with their commonly displayed RGD
sequence (14). These interactions are highly selective for each
circulating protein and each series of integrin heterodimers struc-
tured as two membrane-spanning subunits. A second method for
selecting affinity peptides consists in the synthesis of one ran-
domly made peptide on one individual bead of resin following
a well-defined operating scheme based on a mixing procedure
ensuring the generation of a peptides bank. This methodology has
been named the “One Bead-One Compound” (OBOC) approach
(15). Then, upon incubation of a tumor cell line with a wide
set of beads, each harboring a unique peptide ligand, it could

be possible to subsequently isolate and identify the beads coated
by one or more layers of cells thus reflecting specific interactions
between the cells and the unique peptide sequence grafted on the
bead [for a review, see (16)]. For instance a cyclic 8-mer pep-
tide with the ability to attach a human ovarian adenocarcinoma
cell line has been selected this way (17). Finally, other peptides
such as the somatostatin analogs have been designed following a
third method derived from direct structure-activity relationship
studies made from the native full-length ligand to target neuroen-
docrine tumors expressing a high-density of receptors (5). Once
a specific binding peptide has been identified for a given receptor,
the peptide chemistry offers a full set of potential modifications
aimed at improving its binding selectivity/affinity. The discov-
ery of such short peptides paved the way to the development of
radiolabeled-peptides (or analogs) as potential valuable tools for
the detection and the treatment of cancer cells as reported in a
recent review (12). Several selective receptor-targeting-peptides
have emerged as potent radiopharmaceutical molecules upon their
coupling to γ- or β-emitting radionuclides, in order to either
visualize non-invasively receptor-expressing tumors or to eradi-
cate receptor-expressing cells, respectively. Among these peptide
receptors overexpressed on tumor cells, somatostatin, integrins,
bombesin, cholecystokinin (CCK) gastrin, substance P, vasoin-
testinal peptide (VIP), and neuropeptide Y have been extensively
studied from the native sequence to the evaluation of analogs with
better recognition properties (12).

Meanwhile several receptors overexpressed on various cancer
cells have been characterized (AMHR,Axl, the HER series etc.) [for
recent review, see (18)] but no peptide sequence with interesting
binding affinities for these receptors has been so far identified.
We can thus predict in the next years the identification of new
short peptides (ideally less than 10 amino acids) as potential tar-
geting tools for a large family of receptors differentially expressed
by tumor cells.

IMPROVEMENT OF THE BINDING PROPERTIES OF THE
PEPTIDES
Once the native sequence of a binding peptide has been deter-
mined, several criteria will be worth considering for reaching the
highest tumor targeting properties. These include the design of
more active or stable analogs differing from the original molecule
by changes in their primary structure at well-defined position,
the cyclization, or the multimerization of the targeting-peptide,
driven by the extensive determination of the in vivo pharmaco-
kinetics parameters including the accurate measurement of the
biodistribution. The type of grafting of the radionuclide to the
targeting-peptide,either directly or via a chelator,and the nature of
the chelator itself have been also reported to be an important issue.
Altogether it appears that the efficacy of the peptide-targeting unit
relies on the individual influence of each structural parameter.

A significant number of peptide sequences with high bind-
ing capacity and selectivity for a specific cell receptor have been
already identified [for a recent review: (12)]. These sequences usu-
ally contain between 3 and 10 amino acids. Based on the 20 amino
acids naturally incorporated in the proteins, the chance to get a
unique sequence is comprised between 203 and 2010 which cor-
responds to one chance out of 8000 to more than 10,000 billions
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of possibilities. It sounds thus statistically reasonable to define a
unique peptide sequence with a peculiar specificity for most of
the receptors. Moreover, some amino acids could be replaced by
analogs and therefore could increase the level of specificity for a
given subtype of receptors.

Many examples from the literature highlighted that a circular
peptide usually showed an overall increased affinity compared to
its corresponding linear form. This was the case for renin analogs
(19), but also for the RGD-derived-peptides those binding to the
integrin receptors family has been extensively studied (20). There-
fore, cyclization of these short peptide ligands has been previously
proposed to induce structural constraints generally more favor-
able for interacting with their target protein. Aside the critical
structural constraints associated with the cyclization to mediate
a better rigidity and consequently an increased affinity for the
targeted receptors, the cyclization also significantly protects the
targeting-peptide from anticipated exoproteolytic cleavage occur-
ring in biological fluids (21). Intramolecular cyclizations can be
ensured either by the oxidation of two cysteine residues inserted
at both ends of the primary sequence of the interacting pep-
tide or by the formation of an amide bond between the N- and
the C-terminal ends or, alternatively via other covalent closures
depending on the type of chemical functions integrated on the
linear peptide structure. Along this line, we recently synthesized
various RGD-derived-peptides closed intramolecularly with an
urea bond between the ε-amine of a lysine residue and the α-amino
group of the peptide (22). Altogether a better stability and a higher
affinity of the targeting-peptide for its target should ultimately sig-
nificantly reduce the doses to be injected without impairing the
diagnostic or therapeutic accumulation at the tumor sites.

The multimerization of a binding molecule has also been con-
sidered as an important factor to improve the overall avidity
toward a targeted receptor [for a review: (11)] and several recent
studies confirmed this (10, 23, 24). The binding of a ligand is
known to be a dynamic process with continuous binding and
unbinding to its receptor. Thus, the apparent increase of the avidity
of multimeric structures is explained by the unbinding of a ligand
from a receptor site can be more rapidly replaced by the bind-
ing of another ligand covalently coupled to the first binding unit
(25). Peptide chemistry offers a plethora of possibilities to build
multimeric targeting-structures either by the successive duplica-
tion of a targeting sequence over a linear peptide or by grafting
several cyclic peptides onto a multi-headed scaffold (see Figure 1).
First, the simple duplication of a linear targeting sequence showed
an improvement of the targeted receptor selectivity and affinity
compared to the single sequence (26, 27). However such linear
structure required the synthesis of a long peptide when consid-
ering ideally the repeat of two to four 7–8 amino acids long
peptides. Moreover the exposure of the different repeats to the
targeted receptor is probably not optimized under this linear form
as already highlighted above (19, 20).

Significant improvement of the targeting capacity of such cyclic
peptides has been ensured by the multimerization of the targeting-
peptides using various scaffold units. Most of these scaffolds
have been made from a peptide-based backbone (see Figure 1).
These include the multiple-antigen presenting peptide (MAP)
prepared with a lysine core initially designed for increasing the

FIGURE 1 | Examples of peptide constructs used in radiotherapy or
imaging.

immunogenic response of short peptides upon injection in a
host animal (28), or a peptide ring known as “regioselectively
addressable functionalized template” (RAFT) and harboring four
anchoring functions each allowing the grafting of one targeting-
peptide (23). Both technologies were designed with at least one
additional grafting function to attach directly or indirectly a pay-
load moiety dedicated either to Peptide Receptor Imaging (PRI) or
to Peptide Receptor Radionuclide Therapy (PRTT) as stated below.
The clinical development of such peptide-targeting structures can
be reasonably reached with all the criteria required for clinical
use in peptide receptor-mediated radio-imaging or -therapy since
as reported above, several peptide-derived molecules have been
already provided to the clinic. The industrial synthesis of pep-
tides is nowadays a routine process since pharmaceutical industries
developed about 60 approved peptidic drugs for various patholo-
gies with an annual sale of approximately US$ 13 billions in 2010.
Quantitatively, there is almost a no-limit production scale since the
production of several tons of Fuzeon®, an HIV antifusion 36-mers
peptide (29).

We already mentioned the advantages of the relative small size
of these peptide structures to more efficiently reach tumor cells
deep within tissues. But their small size is also directly associ-
ated with a rapid clearance from the blood stream as usually
observed for molecules less than 20 kDa. This fast elimination
from the blood stream has been often presented as an advantage
because of the reduction of the exposure time of healthy organs to
the radionuclide attached on the peptide-targeting unit. However,
the massive clearance through the kidneys and the liver machin-
ery exposed more particularly these organs to the radionuclide
radiation. For instance, renal irradiation is significant because
of the prolonged residence time due to the reabsorption of the
radiopeptide from the proximal tubuli and its resulting reten-
tion in the interstitium, predominantly in the inner cortical zone.
Several strategies have been investigated to limit the rapid elim-
ination from the blood stream and consequently, to reduce the
renal residence time in kidneys. Along this line the combined
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injection of a radiolabeled targeting-peptide with a succinylated
gelatin reduced its renal retention by almost 50% (30, 31). Ami-
fostine, a small cationic molecule, has also been used to similarly
lower renal retention not only for peptides (32), but also to limit
the cumulative renal toxicity of cisplatin (33). Alternatively, co-
infusion of targeting-peptides with free lysine or arginine cationic
amino acids decreased significantly the renal tubular reabsorption
of radiolabeled-peptides (34–36). More interestingly, a four fold
reduction of the renal uptake has been recorded when a cationic
lysine amino acid instead of a anionic glutamate amino acid was
directly incorporated in the octreotide, a cyclic peptide used in
clinic to target the somatostatin receptor (37). Altogether, these
results highlight that several alternative strategies are already avail-
able to bypass or at least to limit the problems related to the in vivo
use of small targeting-peptides.

Other different behaviors have been observed in the fate of two
series of very related analogs, namely Demobesin-3 and -4 on one
hand, and Demobesin-5 and -6 on the other hand (9). Demobesin-
3 and -4 contained five more amino acids than Demobesin-5 and
-6 made of a eight amino acids core. Despite an apparent minimal
modification of the physico-properties of these peptides, it was
shown that Demobesin-3 and -4 were cleared predominantly via
the kidneys into the urine while Demobesin-5 and -6 showed a
higher hepatobiliary excretion (9). Another discrepancy is the way
these two series of peptide are differently taken up by the intestinal
barrier (9).

In line with the reduction of the passive elimination of
targeting-peptides through the kidney and/or the liver, different
options have been proposed to modify the intrinsic peptide struc-
ture. For instance, due to a noticeable hydrophobic character most
of the radiolabeled bombesin derivatives showed a high accu-
mulation in the liver and a strong hepatobiliary excretion. This
accumulation makes the use of such peptides unfavorable for the
imaging of abdominal lesions, and also will highjack a substantial
amount of a therapeutic peptides from the targeted tumor tis-
sues. In order to tackle this problem, hydrophilic carbohydrated
linker moieties were introduced into the bombesin analogs (38).
As expected, this modification significantly improved the tumor-
to-background ratios. PEG has been also proposed to increase
the hydrophilicity of circulating moieties such as peptides (39) or
much bigger structures such as liposomes or nanoparticles [for a
recent review, see (40)]. Moreover PEG reduces the sensitivity of
peptides to proteolysis because of a steric shielding of the peptide
(41). Since PEGylation enlarges very importantly the molecular
weight of the peptide, it also reduces significantly the kidneys ultra-
filtration, particularly if the PEG size exceeds 30 kDa (42). On the
other hand, mini-PEG polymers made with eight-carbon chains
prolonged the metabolic half-life of a targeting-peptide leading
to higher target-to-background ratios and improved in vivo PET
imaging of inflammation (43). PEG modification of large targeting
structures appears to automatically trigger an enhanced perme-
ability and retention (EPR) effect in the tumor (44) leading to an
overall increase of the therapeutic effect. However, the EPR effect
was found to be effective only for molecules with a molecular
size >45 kDa [for a review (45)]. Therefore, this is not applicable
for short targeting-peptides because it is likely that their PEGyla-
tion could alter the binding capacity and/or selectivity. PEGylation

has been recently developed to shield a small targeting-peptide
(RGD) and to reduce the transport from the tumor interstitium
to the vascular compartment (46). However, it appears that to be
fully effective, this strategy, named Diffusion Molecular Retention
(DMR), required a peritumoral injection of the complex.

The way these peptides are differently delivered in or eliminated
from the blood stream is likely the direct consequence of their
respective intrinsic physico-chemical properties. The cell internal-
ization of a targeting-peptide and therefore its biological activity
could be also directly affected depending on small changes within
its primary structure. As an example, the single presence of a pos-
itive charge at the N-terminus of a peptide ligand induced a faster
and higher cellular internalization of bombesin analogs in gastrin
releasing-peptide receptor-expressing cells (47). Last but not least,
major differences could be eventually observed in the metabolic
stability of peptide-targeting units. Along this line, the metabolic
degradation of the different Demobesin analogs has been shown
to be slow in mouse plasma in vitro. However upon intravenous
injection, their behavior appeared very different since Demobesin-
3 and -4 were both recovered as a very hydrophilic metabolite
whereas the shorter forms (Demobesin-5 and -6) generated two
major metabolic species (9). For all the analogs, the cleavage was
not related to the direct in vivo breakdown of the metal chelator
per se but rather to the cleavage of amide bonds either directly
within the peptide or between the metal chelator and the peptide.

In conclusion, since limited changes in the targeting-peptide
could modify the in vivo pharmacokinetics behavior of two very
related peptides (diffusion, stability, cell uptake, and elimination),
it is worth considering that every single modification at different
levels of the targeting unit could significantly modify the overall
efficacy of the targeting-peptide. This implies a full and very rig-
orous re-evaluation of the peptide-targeting behavior following a
marginal modification of the targeting unit but also paves the way
to more extensive structure-activity relationship studies upon the
replacement of amino acids by various peptidomimetics of dif-
ferent characters to further optimize the efficacy of each peptide
receptor-mediated therapy.

Another issue raised about peptide receptor-mediated target-
ing relies on the use of antagonists or agonists of the targeted
receptor. It has been shown both in vitro and in vivo that recep-
tor antagonists might be preferable to agonists (48). It has first
to be recalled that an agonist drug binds to the same site than
the endogenous ligand and triggers the same expected biologi-
cal effect. Conversely the shape of an antagonist is close enough
to bind to the binding site onto the receptor, but it does not
produce any subsequent effect such as the internalization of the
receptor. For a therapeutic purpose, it sounds preferable however
to induce the rapid cellular internalization of the radiolabeled
targeting-peptide to avoid its displacement due to the binding
of the endogenous ligand. Thus, the quicker the receptor inter-
nalizes the more the cell will be loaded with the radionuclide.
However, we reported that the plasma membrane was a more sen-
sitive target than cytoplasm to dense ionization produced by Auger
electrons when using either a non-internalizing or an internaliz-
ing 125I-labeled antibody (49–51). This higher toxicity will have
to be further investigated depending on the categories of radionu-
clides (for instance Auger emitters versus alpha emitters). If this
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deleterious activity at the plasma membrane were confirmed, the
cellular internalization of a radionuclide coupled to an agonist
molecule would be optional.

The much lower antigenicity of short peptides compared to
larger molecular structures is also presented as an advantage to
support the development of peptide-based targeting units since it
cannot be excluded that in a therapeutic process, several injections
of the peptide-based drug over a long period could be necessary
to fully destroy the tumor cells.

CHOICE OF THE CHELATOR AND THE RADIONUCLIDE
In addition to the peptide that serves to carry the radionuclide
to the tumor target, other parameters must also be considered
when designing optimal radiotherapeutic peptide tools for in vivo
development. These include the radionuclide and the chelator
bound on the targeting-peptide, but also the location at which
the chelator has been grafted on the targeting-peptide because the
difference in the regional charge distribution may differentially
alter receptor-binding, non-specific organ uptake, and hence the
in vivo biodistribution characteristics (52, 53). The radionuclide
is selected based on its physical, chemical, and biological prop-
erties and should ideally be routinely available, easy to couple
to the chelator, harbor short range, high energy, and abundant
particle emission, a stable daughter product, and an appropriate
physical half-life to selectively eliminate the targeted neoplastic
tissue while sparing normal ones. The optimal chelating agent
should fulfill the following criteria: its addition should not inter-
fere with the specificity or with the binding of the peptide to its
target receptor, neither alter its rate of catabolism or patterns of
tissue distribution. Moreover since it is the most common cause
of failure for PRI or PRRT, the chelator should tightly hold the
radiometals to avoid their premature elution in vivo and the risk
to be delivered to normal tissues where they cause toxicity (54).
Finally during its elimination, the chelator should not slow down
the clearance of the radiometal following the complete catabolism
of the targeting-peptide.

The therapeutic radionuclides used for labeling peptides are
yttrium (90Y), lutetium (177Lu), rhenium (188Re, 186Re), copper
(67Cu, 64Cu), and indium (111In). They emit low linear energy
transfer (LET) radiation of 0.2 keV/µm in the form of beta-
particles, internal conversion electrons, as well as gamma-rays or
X-rays that makes them suitable for imaging, such as 64Cu and
90Y for Positron Emission Tomography, 67Cu, 177Lu, 111In, and
188Re for Single-Photon Emission Computed Tomography, and
186Re for planar scintigraphy (55–58). When low LET radiation
interacts with a cell, it produces sparse ionization and individual
DNA lesions easily repairable by the cellular machinery. Con-
sequently, low LET radiation mainly causes sublethal damage,
but higher lethality rate can be reached either by increasing the
absorbed dose or by fractionating the therapy. To concentrate the
highest absorbed dose to the tumor, it is important to choose a
radionuclide for which the half-life matches as much as possible
the pharmacokinetics of the targeting-peptide. Other therapeutic
radionuclides with higher LET radiation (50–230 keV/µm) emit-
ters are available. These include bismuth (213Bi, 212Bi) and astate
(211At), as well as lead (212Pb) and actinium (225Ac) since they gen-
erate 212Bi and 213Bi as daughter components, respectively. These

radioisotopes emit alpha particles that can produce DNA double-
strand breaks even with a single radiation hit and generate clusters
of DNA damage in a small volume which are poorly repairable.
Thus, these emitters induce higher cytotoxicity independently of
the dose rate (59).

Yttrium, lutetium, rhenium, copper, lead, actinium as well
as bismuth are metal radionuclides. Their conjugation to the
targeting-peptides requires a chelating agent, an organic ligand
named chelator (Table 1) (whereas iodine or fluorine labeling
is based on substitution or addition directly on the targeting-
peptide). The chelating agent must be bifunctional because it has
to coordinate in one hand the radiometal and in the other hand
to covalently link the peptide moiety through a functional group
(60). The choice of the bifunctional chelator (BFC) is defined
by the nature and oxidation state of the radiometal that deter-
mine the coordination chemistry thus forming the chelate (61).
The paramount characteristic of a BFC lies in its high thermo-
dynamic stability and kinetic inertness to avoid the release of
ionic radionuclide under the physiological conditions (61). The
decomposition of the BFC can be the result of the formation
of free radicals generated by radiolysis, the chemical modifica-
tion of the BFC, and subsequently, the production of free metal
ions leading to radiotoxicity. Another point is stereoisomerism of
the metal chelate leading to different spatial orientation of the
compound that might affect lipophilicity and, as described for
the peptide modification, changes in the biodistribution pattern.
However biodistribution is directly dependent on blood clearance
closely related with the hydrophilicity of BFC which influence renal
excretion of the conjugate (61). All these points will be evaluated
to choose the best BFC required.

OPTIMAL COORDINATION
Several criteria have to be considered to optimize the coordina-
tion of the metal and therefore the stability of the metal on the
chelator. These include the charge, the match between the ionic
radius of the radionuclide and the cavity size of the chelator, the
appropriate denticity of the chelator acting as a set of firm pincers
binding of certain metal ions (associated to the number of donor
binding groups) with the appropriate chemical characteristics. The
rate of formation and dissociation of the metal complex has also
to be considered (62). Taking into account all these parameters
will ensure the strongest stability and will limit the dissociation,
leading to a high thermodynamic stability and kinetic inertness.

THERMODYNAMIC STABILITY AND KINETIC INERTNESS
Apart from the natural desferrioxamine, one of the earliest BFC
used (62), the polyaminocarboylate ligands, also known as acyclic
polyamine carboxylate ligands, through bifunctional EDTA have
been first used to chelate various radionuclides. EDTA is an open-
chain ligand and donates its six lone pairs of electrons to coor-
dinate metal cations (named hexadentate ligand). A derivative of
EDTA, DTPA, is an eight-coordinating complexing agent forming
complexes of 2–4 orders of magnitude higher than EDTA thus
allowing the coordination of larger metal ions such as lanthanides
with coordination numbers of 8 or 9 (63). Indeed the larger num-
ber of ring closures around the metal atom, the more stable the
complex.
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Table 1 | Chelator families and their representative for metal complexation.

Natural chelator Desferrioxamine

Acyclic polyaminocarboxylate ligands EDTA, Ethylenediaminetetraacetic acid

DTPA, Diethylenetriaminepentaacetic acid

Cyclic polyamines Cyclam, 1,4,8,11-tetraazacyclotetradecane

Cyclen, 1,4,7,10-tetraazacyclododecane

Cyclic polyaminocarboxylates and their

derivatives

DOTA, 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid

TETA, 1,4,8,11-tetraazacyclotetradecane-1,4,8,11-tetraacetic acid

NOTA, 1,4,7-triazacyclononane-1,4,7-triacetic acid

Amines with rigid backbones Tachpyr, cis,cis-1,3,5-triaminocyclohexane

Cross-bridged cyclic polyaminocarboxylates CB-TE2A, 1,4,8,11-tetraazabicyclo[6.6.2]hexadecane

Bicyclic hexaamine Sar, sarcophagine

Cyclic polyamines are also named polyaza macrocycles; note that the sarcophagine (bicyclic hexamines) belongs to this family. Adapted from Wadas et al. (60) and

Brechbiel et al. (62).
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Another wide family of metal chelators is the tetraazamacro-
cyclic ligands group. These macrocycles tightly encapsulate metal
ions. DOTA, a dodecane backbone derivative, is the most exten-
sively used representative of these macrocycles. The “tetraaza cage
class” of complexing agents offers a good thermodynamic stability
(i.e., stability constant) of the divalent metals complex as Cu2+ for
copper isotopes (typically 64Cu and 67Cu) (64).

Although an apparent strong complexation in vitro, 64Cu-
TETA-octreotide has been reported to partly loose the radionu-
clide in vivo despite the tetradecane basis of TETA (65) (see toxicity
paragraph). This phenomenon has been also described for linear
or macrocyclic BFCs shown to be unstable in human serum over
long periods of 2 or 3 days (66). However, macrocyclic or macro-
bicyclic chelators are generally good choices for encapsulating this
category of radioisotopes. These ligands utilize both the macro-
cyclic and chelate effects to enhance stability (60) probably because
when one of the chelating nitrogen atom dissociates from the metal
center, the overall topological constraints of the cage still maintain
the metal inside and ensure its facile re-coordination to an other
nitrogen (67).

The moderate in vivo stability of 64Cu-DOTA could increase
the non-targeted organ radiation dosage and lower the tumor-to-
non-tumor contrast compared to non-macrocyclic agents. 64Cu-
labeled radiopharmaceuticals with improved stability have been
reported (68). These include NOTA derivatives and CB-TE2A, a
cross-bridged version of TETA where two of the acetate arms have
been replaced by ethylene bridges between non-adjacent nitro-
gens. Such bridging has been shown to improve the stability of
Cu-cyclam, probably because when one of the chelating nitrogen
atoms of the cage dissociates from the metal center, the topolog-
ical constraints induced by the ligand do not allow it to move
very far away from the metal center, effectively ensuring its facile
re-coordination (67). Cross-bridging led to an exceptional kinetic
inertness in aqueous solution (69) and high resistance to acid
catalyzed decomplexation experiments, better than other chela-
tor such as sarcophagine, a hexaazamacrobicyclic chelator able to
form fully encapsulated complexes with copper (60). Along these
lines the sarcophagine (denoted as “Sar”) and its derivatives are
well known to strongly bind copper and to generate highly sta-
ble complexes (70). The better stability of Hg(II)-Sar complexes
over Hg(II)-DOTA, Hg(II)-TETA, or Hg(II)-cyclam has been thus
confirmed (71).

Kinetic stability plays a more central role in biological sta-
bility of metal-complexes than thermodynamic stability in vivo.
The thermodynamic stability is directly related to the energies
involved in the metal complex formation. The kinetic stability pro-
vides direct insights into relative in vivo dissociation by describing
the kinetics of dechelation corresponding to the reaction occur-
ring via spontaneous dissociation of the chelate or the kinetic of
transmetallation due to endogenous metals (72). Therefore the
slower a reaction, the greater the kinetic stability. The effect of
increasing macrocycle size from DOTA to TETA results in a small
decrease in the thermodynamic stability for the relatively small
Cu2+ ion diameter. The correctness of this relationship between
thermodynamic and kinetic stability still needs to be demonstrated
since the decrease in thermodynamic stability seemed inconsis-
tent with the greater in vivo stability of 64Cu-TETA for instance

(73). Thermodynamic stability and acid stability measurements
for other radionuclide-chelator complexes did not accurately pre-
dict either the in vivo stability (56). Identically, in a series of six
Cu(II) macrocyclic complexes, some of the most thermodynam-
ically stable complexes appeared to be the least stable in vivo,
which confirmed the kinetic stability as a crucial parameter to
be considered (74). On the other hand, a class of cyclic polyamine
ligands showing relatively high stability both in vitro and in vivo
when complexed to Cu(II) are the methylenephosphonate pen-
dant armed tetraazamacrocyclic ligands. However, the phospho-
nate function present on this chelator has been shown to be a
natural bone-seeking agent (75, 76). Therefore, the use of this
class of chelators has been very rapidly abandoned for obvious
toxicological reasons.

Bifunctional chelators are thus essential components in the
assembly of radiometal-labeled-peptides since they play a criti-
cal role in the in vivo stability of the radioconjugate and, thus their
therapeutic effectiveness (54) despite the lack of a clear under-
standing of the relationship between thermodynamic and kinetic
stability. However, it has been empirically shown that macrocyclic
ligands were usually the most kinetically stable chelate-complexes
in human serum. To gage the efficiency of new chelate-complexes,
DOTA remains considered as the gold standard of kinetic stability
and is often used as a reference (77). For acyclic ligands com-
plexed with a series of lanthanide metals, it has been predicted
that flexibility was critical for stability (78). As an example, it
was suggested that inflexible conformations of the DTPA chela-
tor complexed with various lanthanide metals showed a decreased
stability correlated with the decrease of the metal atomic radii. But
again this theory has been reconsidered since other stability stud-
ies led to less clear results despite the use of identical lanthanide
metal complexed with a more rigid DTPA chelate complex (77).
Thus, prediction of kinetic stability with acyclic ligands on the
basis of metal radius size also appears more complicated than
expected.

Several new ligand systems, including those based upon the
cis, cis-1,3,5-triaminocyclohexane scaffold, the sarcophagine lig-
ands, and the cross-bridged tetraazamacrocycles have been devel-
oped to complex 64Cu more stably. Inside the cis, cis-1,3,5-
triaminocyclohexane family the 67Cu-tachpyr complex exhibit a
higher stability in human serum than the 67Cu-[tachpyr-(6-Me)]
(79). DiBartolo et al. investigated a family of Sar derivatives, for
which complexation was 100% complete within several minutes
at 25°C over the entire pH range (80).

TOXICITY, TRANSMETALLATION, AND TRANSCHELATION
PHENOMENONS
Because of the geometrical constraints of macrocyclic BFCs, the
spontaneous dissociation of the metal from this type of chela-
tor should be limited thanks to the potential re-coordination of
the metal ion. Metal ions naturally present in blood and other
body fluids can also displace metal radionuclide ions from their
complex (the so-called “transmetallation” phenomenon) (72). As
seen above, the loss of the metal can occur thus impeding its
localization to the target sites. Consequently, this decomplexation
can create critical problems for imaging because of an important
increase of the background signal but more importantly, there is
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a major toxicity concern due to the long-term accumulation of
lanthanide elements in bones, with the risks of deleterious bone
marrow irradiation (56). The decomplexation of copper can lead
to its sequestration in metallothionein in hepatocytes and then its
exportation to other organs following re-circulation in blood (64).
This has been particularly noticeable with the important retention
of 64Cu activity in blood, a poor liver clearance, and an increasing
bone marrow uptake leading to a significant drop of the number of
white blood cells despite weak signs of overall toxicity in rats (65).

Another factor affects stability and refers to the exchange of
ligands: the transligation, or transchelation phenomenon. It is
observed when the used metallic radionuclide is scavenged by a
metalloenzyme that can naturally complex a metal of similar or
very close ionic radius. The transchelation of 64Cu from DOTA
to superoxide dismutase (SOD) in the liver has been for example
observed (73). Therefore, a 64Cu-DOTA therapy is indeed diffi-
cult to encourage owing to the persistent presence of the final
radiometal metabolite (64Cu-DOTA-lysine) within the liver (70).
An identical transchelation has been also shown in vivo with a
TETA-octreotide conjugated with a accumulation of 64Cu bound
to SOD in rat liver (81). As illustrated with this example dealing,
there is a great need to address these transchelation concerns and
to design chelators forming more stable complexes with copper.

CLEARANCE
The blood clearance of radiolabeled-chelators also appears to be
very related to the structure of the used compounds. As an exam-
ple, Boswell and coworkers demonstrated better blood clearance
properties through the liver and kidneys for a cross-bridged BFC
than for an azamacrocycle BFC analog (73). Apart from the cross-
bridged structure, the charge of the BFC could induce a significant
effect on the kidney and liver clearance since it has been shown that
CPTA or PBCA with a net charge of+1 showed much greater accu-
mulation in the kidney and the liver and, consequently, a slower
clearance than the BFC with a net formal charge of −2 (82). In
addition to the difference in the net charge of these chelators, there
is also a major difference in the physico-chemical characters since
CPTA and PBCA are much more lipophilic and positively charged
compared to BAT and TETA. The respective influence of the
structure, the charge, and the lipophilic characters of the chelator
components, as well as the targeting-peptides as developed above,
underlying the blood clearance is not currently fully understood,
nor can be anticipated the consequence on the blood clearance
following a despite seemingly small chemical modifications of one
component of the targeting structure.

LABELING CONDITIONS
Complexation procedures of radionuclides to chelators have also
been the subject of several investigations to improve the yield of
labeling while limiting the denaturation of the targeting unit to
be functionalized. Such denaturation problems are rather limited
with targeting-peptides because their spatial structure is usually
more stable due to their short size or highly constraint struc-
tures. As a matter of fact, the DOTA radiochemistry requires for
instance heating – up to 95°C for 68Ga labeling – to obtain ade-
quate yields and specific activities (83, 84). However, NOTA was
radiolabeled efficiently at much lower temperatures (40°C) (85) or

at ambient temperature (86). The cross-bridged ligand CB-TE2A
also requires high complexation temperature (95°C to label 64Cu
with a high radiochemical purity). Altogether these data indicate
that the more complex the chelator is, the higher temperature
should be provided to complete the loading of the chelator with
the corresponding radionuclide. Another important issue is obvi-
ously the stoichiometry ratios between the macrocyclic chelator
and the metal since ratio of 1:2–1:3 are often required when com-
plexing macrocyclic chelator whereas 1:1 ratio was sufficient for
acyclic ligands. The chelation is also time-dependent depending
on the macrocyclic or linear structure of the chelator (77).

These differences in the preparation conditions (temperature,
stoichiometry, kinetics) likely reflect the increasing difficulty for
the radionuclide to get access into the chelator with a higher degree
of complexity.

CONJUGATION OF THE PEPTIDE WITH THE BFC USING
HETEROLINKERS
The choice of the bifunctional linker to couple the targeting-
peptide with the radionuclide-chelator is closely related to the
chemistry encountered when performing the derivatization or
conjugation of proteins, peptides, nucleic acids, or the functional-
ization of nanoparticles, liposomes, biological surfaces, etc. Indeed
it depends on the type of functional group that is present on both
the chelator and the targeting-peptide. Isothiocyanate (NCS), N -
hydroxysuccinimide-esters (NHS-esters) or maleimide group are
more commonly used for the covalent coupling of primary amines
or thiols (see Figure 2) (70). Indeed, as observed with this type of
molecule conjugation using these heterolinkers, there is a risk of
competitive hydrolysis mainly with the NCS or NHS moieties that
could indeed reduce conjugation efficiency. These secondary reac-
tions could indeed be amplified particularly if high temperatures
are required during the radionuclides loading on the chelator.
Another major concern to consider is the possible interference
of the conjugation of the chelator-radionuclide with the optimal
properties of the targeting-peptide binding to its receptor since
the conjugation site can be located at or near the active site (70).
This is more the case for radioimmunotherapy upon conjuga-
tion of a chelator on a mAb than on a targeting-peptides because
peptide chemistry offers a large panel of functionalization at vari-
ous well-defined sites within the primary sequence to avoid steric
hindrance.

There are a large numbers of heterolinkers available on the
market from several suppliers. Some of them are also design
to offer various characteristics depending on the needs. These
include different lengths to get variable spacing between the
coupled molecules, or different chemical natures to fit with the
experimental requirements. Indeed, this offers a new site for mod-
ifying the biological behavior of the targeting unit by changing
the physico-chemical character of this heterolinker moiety as
recently proposed with the integration of mini-PEG spacering
between a targeting-peptide and a 68Ga loaded DOTA chelator
(43). More generally, peptide-targeting-BFCs loaded with a metal
radionuclide can also be modified with pharmacokinetic modify-
ing linkers (PKM) of different natures (cationic, anionic, neutral,
or metabolically cleavable.). The linker can be a simple hydro-
carbon chain to increase the lipophilicity, a peptide sequence to
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FIGURE 2 | Main functional groups used to covalently link the peptide
moiety (A) and examples of BFCs (B). BAT is a derivative of TETA; CPTA is a
derivative of cyclam, and PCBA is a derivative of cyclen (seeTable 1). BAT is

conjugated to peptide using the linking agent 2IT (2-iminothiolane) which
forms a thioether bond between BAT and the peptide. CPTA and PCBA are
conjugated to peptide via an amide linkage. Adapted from Rogers et al. (82).

improve hydrophilicity, and renal clearance, or a PEG linker to
slow extraction by hepatocytes (61).

CONCLUSION
In molecular terms, the difference between PRI and PRRT in a pep-
tide receptor strategy is only limited by the type of radionuclide
loaded on its chelator, this latter being itself covalently bound to
the targeting-peptide. Since both PRI and PRRT strategies could be
based on the same targeting-peptide, it offers the possibility to per-
form first a PRI with a given couple of chelator-radionuclide and
to treat afterward the patient with the same targeting-peptide but
now loaded with a more cytotoxic radionuclide to induce a PRRT
response. This possibility could allow the accurate determination
of the personalized biokinetics constants associated with the deliv-
ered targeting-peptide before the therapeutic phase using the same
targeting-peptide but now loaded with a compatible radionuclide
mounted on its respective chelator. When possible, the adjustment
of the injected radiation dose and the prediction of the therapeu-
tic efficacy on tumor lesions as well as effects on healthy organs
can be better anticipated. After the radiotherapy phase, PRI can
be once again used to assess the progression, the stability, or the
relapse of the tumor under the same initial conditions previously
recorded.

Moreover, thanks to the versatility to attach any chemical moi-
ety onto a targeting-peptide, one can imagine the concomitant
use of a drug- and a radionuclide-targeting-peptide to induce
a more potent therapeutic effect. In line with this, the combi-
nation of peptide receptor-mediated radionuclide therapy using
octreotate or octreotide somatostatin binding peptides with frac-
tionated external beam radiotherapy has been recently eval-
uated in patients suffering of advanced symptomatic menin-
gioma. All patients reported stabilization or improvement of

tumor-associated symptoms, without any morphologic tumor
progression (87).

The use of a combination of two (or more) radiolabeled
targeting-peptides can lead to a number of advantages. The
somatostatin receptor is the best example for illustrating this
issue since tumor cells overexpressed concomitantly, but at dif-
ferent expression level, the somatostatin heterodimeric receptors
(sst1-5). Each of these receptor dimers binds the somatostatin
derived-peptides with different affinity (1). Therefore, the use
of a cocktail of radionuclide labeled-peptides could increase in
this case the overall concentration of the radioactivity at the
tumor level following a cumulative effect of each peptide bound
to its own cell-target. Second, the expression of these peptide
receptors is likely heterogeneous, both spatially and temporar-
ily. For instance, the expression rate of one of the receptors
could decrease over the duration of the treatment and conse-
quently, the use of several targeting-peptides could thus pre-
vent the reduction of the therapeutic effect during the treat-
ment. Altogether the use of several targeting-peptides at the
same time could significantly improve the overall efficacy of
the PRRT.

FUTURE DIRECTIONS WITH TUMOR TARGETING-PEPTIDES
Peptide chemistry offers an almost limitless panel of possibili-
ties to synthesize peptide molecules aimed at targeting a tumor
receptor expressed more exclusively on tumor cells. We previously
mentioned the cyclization to stabilize the peptide integrity or to
increase the peptide affinity, the multimerization to augment the
avidity, the insertion of unnatural amino acids mainly to improve
the peptide stability toward proteases but also in some cases to
modify the binding specificities. The addition of biologically com-
patible components such as PEG could also alter the biokinetics
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characters, and consequently the bioavailability of the targeting
unit. Indeed since all the recptors are different, there will prob-
ably not be a well-defined strategy to apply universally and it is
likely that investigations will have to be made in each case. For
some specific neoplasms, it might be possible to combine sev-
eral characteristics from individual different peptides to impulse a
synergistic effect toward the targeting unit. This has been recently
initiated by the Ruoslahti’s group which used two peptides built
in one single linear sequence (88). The described system is based
on the use of an integrin binding peptide (sequence CRGDK)
linked to a cryptic CendR peptide (R/KXXR/K-OH). It has been
demonstrated that the first RGD peptide bound the alpha-v beta-3
integrin receptor and then, following a not-yet-identified mecha-
nism, a proteolytic event occured thus exposing the CendR motif
which became able to interact with NRP-1 receptor and to trigger
an improved internalization process only in tumor cell targeted by
the RGD peptide (88).

Several peptides have been identified as potential tools to tar-
get tumor cells and most are currently still under investigation
(see Table 2). As previously discussed, it might be advantageous to
target several receptors at the same time. This can be performed
upon the co-injection of two different targeting units, but we can
also imagine a targeting unit loaded with two (or more) differ-
ent targeting-heads in order to bind a wider set of tumor cells
expressing different receptors in different abundances. As pre-
viously described, the peptide synthesis methodology offers the

Table 2 | Peptides identified as potential tools to target tumor cells.

Target receptor Sequence Length Reference

EphA2 (TK) YSAYPDSVPMMS 12AA Wang et al. (89)

CCK/Gastrin qqqAYGWMDF 10AA Chopra (90)

p32 receptor CGNKRTRGC 9AA Karmali et al. (91)

α5β1 PHSCNK 6AA Dai et al. (92)

EGFR FALGEA 6AA Leung (93)

Tumor vessels CGKRK 5AA Yao et al. (94)

α2β1 DGEA 4AA Huang et al. (95)

APN (CD13) NGR 3AA Chen et al. (96)

αvβ3 RGD 3AA Nahrwold et al. (97)

possibility to use the same targeting head but loaded with different
effective moieties, either dedicated to perform a PRI or a PRRT,
depending on the type of radionuclide, or a chemotherapy upon
the grafting of a cytotoxic agent. This offers the possibility to fight
a tumor with different therapeutics weapons based on the same
recognition mean.

The use of targeting-peptide is particularly appropriate for
some urogenitary cancer since a direct intraperitoneal injection
of few milligrams of peptide could allow global targeting-peptide
concentration in the micromolar range which should an optimal
concentration to obtain good cellular binding of targeting-peptide
to cell receptor.
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