678,598 research outputs found
Stability and Equilibrium Analysis of Laneless Traffic with Local Control Laws
In this paper, a new model for traffic on roads with multiple lanes is
developed, where the vehicles do not adhere to a lane discipline. Assuming
identical vehicles, the dynamics is split along two independent directions: the
Y-axis representing the direction of motion and the X-axis representing the
lateral or the direction perpendicular to the direction of motion. Different
influence graphs are used to model the interaction between the vehicles in
these two directions. The instantaneous accelerations of each car, in both X
and Y directions, are functions of the measurements from the neighbouring cars
according to these influence graphs. The stability and equilibrium spacings of
the car formation is analyzed for usual traffic situations such as steady flow,
obstacles, lane changing and rogue drivers arbitrarily changing positions
inside the formation. Conditions are derived under which the formation
maintains stability and the desired intercar spacing for each of these traffic
events. Simulations for some of these scenarios are included.Comment: 8 page
Signal strength determines the nature of the relationship between perception and working memory
Neurophysiological and behavioral studies have shown that perception and memory share neural substrates and functional properties. But are perception and the active working memory of a stimulus one and the same? To address this question in the spatial domain, we compared the percept and the working memory of the position of a target stimulus embedded within a surround of moving dots. Motion in a particular direction after the target's offset biased the memory of target location in the same direction. However, motion simultaneous with a high-contrast, perceptually strong target biased the percept of target location in the opposite direction. Thus, perception and working memory can be modified by motion in qualitatively different ways. Manipulations to strengthen the memory trace had no effect on the direction of the memory bias, indicating that memory signal strength can never equal that of the percept of a strong stimulus. However, the percept of a weak stimulus was biased in the direction of motion. Thus, although perception and working memory are not inherently different, they can differ behaviorally depending on the strength of the perceptual signal. Understanding how a changing surround biases neural representations in general, and postsensory processes in particular, can help one understand past reports of spatial mislocalization
Travelling Randomly on the Poincar\'e Half-Plane with a Pythagorean Compass
A random motion on the Poincar\'e half-plane is studied. A particle runs on
the geodesic lines changing direction at Poisson-paced times. The hyperbolic
distance is analyzed, also in the case where returns to the starting point are
admitted. The main results concern the mean hyperbolic distance (and also the
conditional mean distance) in all versions of the motion envisaged. Also an
analogous motion on orthogonal circles of the sphere is examined and the
evolution of the mean distance from the starting point is investigated
Changing expectations about speed alters perceived motion direction
SummaryOur perceptions are fundamentally altered by our knowledge of the world. When cloud-gazing, for example, we tend spontaneously to recognize known objects in the random configurations of evaporated moisture. How our brains acquire such knowledge and how it impacts our perceptions is a matter of heated discussion. A topic of recent debate has concerned the hypothesis that our visual system ‘assumes’ that objects are static or move slowly [1] rather than more quickly [1–3]. This hypothesis, or ‘prior on slow speeds’, was postulated because it could elegantly explain a number of perceptual biases observed in situations of uncertainty [2]. Interestingly, those biases affect not only the perception of speed, but also the direction of motion. For example, the direction of a line whose endpoints are hidden (as in the ‘aperture problem’) or poorly visible (for example, at low contrast or for short presentations) is more often perceived as being perpendicular to the line than it really is — an illusion consistent with expecting that the line moves more slowly than it really does. How this ‘prior on slow speeds’ is shaped by experience and whether it remains malleable in adults is unclear. Here, we show that systematic exposure to high-speed stimuli can lead to a reversal of this direction illusion. This suggests that the shaping of the brain's prior expectations of even the most basic properties of the environment is a continuous process
Gyrotron transmitting tube
An RF transmitting tube for the 20 GHz to 500 GHz range comprises a gyrotron and a multistage depressed collector. A winding provides a magnetic field which acts on spent, spinning or orbiting electrons changing their motion to substantially forward linear motion in a downstream direction. The spent electrons then pass through a focusser into the collector. Nearly all of the electrons injected into the collector will remain within an imaginary envelope as they travel forward toward the end collector plate. The apertures in the collector plates are at least as large in diameter as the envelope at any particular axial position
- …