2,722 research outputs found

    Rotational cavity optomechanics

    Full text link
    We theoretically examine the optomechanical interaction between a rotating nanoparticle and an orbital angular momentum-carrying optical cavity mode. Specifically, we consider a dielectric nanosphere rotating uniformly in a ring-shaped optical potential inside a Fabry-Perot resonator. The motion of the particle is probed by a weak angular lattice, created by introducing two additional degenerate Laguerre-Gaussian cavity modes carrying equal and opposite orbital angular momenta. We demonstrate that the rotation frequency of the nanoparticle is imprinted on the probe optical mode, via the Doppler shift, and thus may be sensed experimentally using homodyne detection. We show analytically that the effect of the optical probe on the particle rotation vanishes in the regime of linear response, resulting in an accurate frequency measurement. We also numerically characterize the degradation of the measurement accuracy when the system is driven in the nonlinear regime. Our results are relevant to rotational Doppler velocimetry and to studies of rotational Brownian motion in a periodic lattice.Comment: 7 pages, 2 figures, to appear in JOSA

    Multiple membrane cavity optomechanics

    Full text link
    We investigate theoretically the extension of cavity optomechanics to multiple membrane systems. We describe such a system in terms of the coupling of the collective normal modes of the membrane array to the light fields. We show these modes can be optically addressed individually and be cooled, trapped and characterized, e.g. via quantum nondemolition measurements. Analogies between this system and a linear chain of trapped ions or dipolar molecules imply the possibility of related applications in the quantum regime.Comment: 4 pages, 2 figure

    Cavity optomechanics with Si3N4 membranes at cryogenic temperatures

    Full text link
    We describe a cryogenic cavity-optomechanical system that combines Si3N4 membranes with a mechanically-rigid Fabry-Perot cavity. The extremely high quality-factor frequency products of the membranes allow us to cool a MHz mechanical mode to a phonon occupation of less than 10, starting at a bath temperature of 5 kelvin. We show that even at cold temperatures thermally-occupied mechanical modes of the cavity elements can be a limitation, and we discuss methods to reduce these effects sufficiently to achieve ground state cooling. This promising new platform should have versatile uses for hybrid devices and searches for radiation pressure shot noise.Comment: 19 pages, 5 figures, submitted to New Journal of Physic

    Calibrated quantum thermometry in cavity optomechanics

    Full text link
    Cavity optomechanics has achieved the major breakthrough of the preparation and observation of macroscopic mechanical oscillators in peculiarly quantum states. The development of reliable indicators of the oscillator properties in these conditions is important also for applications to quantum technologies. We compare two procedures to infer the oscillator occupation number, minimizing the necessity of system calibrations. The former starts from homodyne spectra, the latter is based on the measurement of the motional sidebands asymmetry in heterodyne spectra. Moreover, we describe and discuss a method to control the cavity detuning, that is a crucial parameter for the accuracy of the latter, intrinsically superior procedure

    A micropillar for cavity optomechanics

    Full text link
    We present a new micromechanical resonator designed for cavity optomechanics. We have used a micropillar geometry to obtain a high-frequency mechanical resonance with a low effective mass and a very high quality factor. We have coated a 60-ÎĽ\mum diameter low-loss dielectric mirror on top of the pillar and are planning to use this micromirror as part of a high-finesse Fabry-Perot cavity, to laser cool the resonator down to its quantum ground state and to monitor its quantum position fluctuations by quantum-limited optical interferometry

    Cavity spin optodynamics

    Full text link
    The dynamics of a large quantum spin coupled parametrically to an optical resonator is treated in analogy with the motion of a cantilever in cavity optomechanics. New spin optodynamic phenonmena are predicted, such as cavity-spin bistability, optodynamic spin-precession frequency shifts, coherent amplification and damping of spin, and the spin optodynamic squeezing of light.Comment: 4 pages, 3 figure
    • …
    corecore