We present a new micromechanical resonator designed for cavity optomechanics.
We have used a micropillar geometry to obtain a high-frequency mechanical
resonance with a low effective mass and a very high quality factor. We have
coated a 60-μm diameter low-loss dielectric mirror on top of the pillar and
are planning to use this micromirror as part of a high-finesse Fabry-Perot
cavity, to laser cool the resonator down to its quantum ground state and to
monitor its quantum position fluctuations by quantum-limited optical
interferometry