615,500 research outputs found

    Continuous canonical correlation analysis

    Get PDF
    Given a bivariate distribution, the set of canonical correlations and functions is in general finite or countable. By using an inner product between two functions via an extension of the covariance, we find all the canonical correlations and functions for the so-called Cuadras-Aug´e copula and prove the continuous dimensionality of this distribution

    Robust Sparse Canonical Correlation Analysis

    Full text link
    Canonical correlation analysis (CCA) is a multivariate statistical method which describes the associations between two sets of variables. The objective is to find linear combinations of the variables in each data set having maximal correlation. This paper discusses a method for Robust Sparse CCA. Sparse estimation produces canonical vectors with some of their elements estimated as exactly zero. As such, their interpretability is improved. We also robustify the method such that it can cope with outliers in the data. To estimate the canonical vectors, we convert the CCA problem into an alternating regression framework, and use the sparse Least Trimmed Squares estimator. We illustrate the good performance of the Robust Sparse CCA method in several simulation studies and two real data examples
    • …
    corecore