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Continuous canonical correlation
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Given a bivariate distribution, the set of canonical correlations and func-
tions is in general finite or countable. By using an inner product between
two functions via an extension of the covariance, we find all the canonical
correlations and functions for the so-called Cuadras-Augé copula and prove
the continuous dimensionality of this distribution.

1 Introduction

Let H be a bivariate cdf with marginals F,G. Suppose that the measure dH(x, y) is
absolutely continuous with respect to dF (x)dG(y) and that Pearson’s contingency
coefficient φ2 defined by

φ2 + 1 =

∫ b

a

∫ d

c

(dH(x, y))2/(dF (x)dG(y))

is finite. Then the following expansion holds

dH(x, y)− dF (x)dG(y) =
∑
n≥1

ρnan(x)bn(y)dF (x)dG(y), (1)

where ρn are canonical correlations, ordered in descending order, and an(x), bn(y) are
canonical variables (Lancaster, 1969). Thus ρ1 = ρ(a1(X), b1(Y )) is the maximum
correlation between a function of X and a function of Y, ρ2 = ρ(a2(X), b2(Y )) is the
maximum correlation constrained to the functions with zero correlation with a1(X)
and b1(Y ), etc.
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Cuadras (2002a) proved the formula giving the covariance between two functions
of bounded variation in terms of the cdf’s. If H(x, y) is symmetric and positive-
quadrant dependent, i.e., H(x, y) ≥ F (x)G(y), and F ≡ G, this formula gives rise to
define the following inner product 〈α, β〉H between two functions α, β with common
rank [a, b] :

〈α, β〉H = Cov(α(X), β(Y ))

=
∫ b

a

∫ b

a
(H(x, y)− F (x)F (y)) dα(x)dβ(y).

(2)

Cuadras (2002b) expressed (1) in terms of cdf’s

H(x, y)− F (x)G(y) =
∑
n≥1

ρn

∫ b

a

L(x, s)dan(s)

∫ d

c

M(t, y)dbn(t), (3)

where L(x, s) = min{F (x), F (s)}−F (s)F (t), M(t, y) = min{G(t), G(y)}−G(t)G(y).
Making an analogy with correspondence analysis, the number of distinct canonical
correlations determine the dimensionality of H, i.e., the dimension of H is #(ρn),
see Cuadras et al. (1999). In general, this dimension is finite or countable, but can
be continuous.

Cuadras and Augé (1981) proposed the bivariate distribution

Hθ(x, y) = min{F (x), G(y)}θ(F (x)G(y))1−θ, 0 ≤ θ ≤ 1,

where the marginals are F,G. The uniform transformation U = F (X), V = G(Y ),
provides the so-called Cuadras-Augé copula

Cθ(u, v) = min{u, v}θ(uv)1−θ, 0 ≤ θ ≤ 1,

which is the survival copula of the Marshall-Olkin distribution (Nelsen, 1999). See
Ruiz-Rivas and Cuadras (1988) and Genest and Plante (2003) for further aspects.

Suppose that the cdf of the random vector (U, V ) is Cθ. If H1 is the Heaviside
distribution

H1(x) = 0 if x < 1, H1(x) = 1 if x ≥ 1,

it can be proved (Cuadras, 2002a) that the first canonical correlation or maximum
correlation between a function of U and a function of V is

ρ(H1(U),H1(V )) = max
ϕ

ρ(ϕ(U), ϕ(V )) = θ.

We generalize this result by extending the canonical correlation analysis to the
continuous case and proving the continuous dimensionality for this copula. This
approach is comparable to the continuous extension of multidimensional scaling
(Cuadras and Fortiana, 1995).
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2 Eigenanalysis

Let us find the eigenvalues and eigenfuctions for the covariance kernels

Kθ(u, v) = min{u, v}θ(uv)1−θ − uv and L(u, v) = min{u, v} − uv,

related to the Cuadras-Augé copula. Note that L = K1.
A function φ is an eigenfunction of Kθ with respect to L with eigenvalue λ if∫ 1

0

Kθ(u, v)dφ(v) = λ

∫ 1

0

L(u, v)dφ(v).

Let us define

Hγ,ε(x) = Hγ−(x)− γ

γ + ε
H(γ+ε)+(x),

where
Hγ−(x) = 0 if x < γ, Hγ−(x) = 1 if x ≥ γ,

Hγ+(x) = 0 if x ≤ γ, Hγ+(x) = 1 if x > γ.

Theorem 1. The set (φγ, λγ) of eigenfunctions and eigenvalues of Kθ with respect
to L is given by

φγ = lim
ε→0

Hγ,ε, λγ = θγ1−θ, 0 ≤ γ ≤ 1,

where φγ is the indicator of γ, i.e., φγ(x) = 0 if x 6= γ, and φγ(γ) = 1.

Proof. We have

dHγ,ε(x) = dHγ−(x)− γ

γ + ε
dH(γ+ε)+(x),

with dHγ−(x) = dHγ+(x) = 0 for x 6= γ, dHγ−(γ) = 1 and∫ 1

0

vαdHγ−(v) =

∫ 1

0

vαdHγ+(v) = γα.

For 0 < u < γ,∫ 1

0
Kθ(u, v)dHγ,ε(v) =

∫ u

0
Kθ(u, v)dHγ,ε(v) +

∫ 1

u
Kθ(u, v)dHγ,ε(v)

= 0 + u
∫ 1

0
(v1−θ − v)dH(γ, ε)

= u{γ1−θ − γ − γ
γ+ε

[(γ + ε)1−θ − (γ + ε)]}
= u[γ1−θ − γ(γ + ε)−θ].

For γ ≤ u ≤ γ + ε, where ε > 0 is arbitrarily small,∫ 1

0
Kθ(u, v)dHγ,ε(v) =

∫ u

γ
(vu1−θ − uv)dHγ,ε(v) +

∫ γ+ε

u
u(v1−θ − v)dHγ,ε(v)

= (u1−θ − u)γ + u(γ − γ(γ + ε)−θ)
= γ[u1−θ − u(γ + ε)−θ].
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For 0 < γ + ε < u,∫ 1

0
Kθ(u, v)dHγ,ε(v) = γθ(uγ)1−θ − uγ − γ

γ+ε
[(γ + ε)θu1−θ − u(γ + ε)]

= γ(u1−θ − u)− γ(u1−θ − u)
= 0.

In particular, if θ = 1, Kθ = L and

∫ 1

0
L(u, v)dHγ,ε(v) =


u[1− γ(γ + ε)−1], if 0 < u < γ,
γ[1− u(γ + ε)−1], if γ ≤ u ≤ γ + ε,
0, if γ + ε < u < 1.

Thus we have∫ 1

0

Kθ(u, v)dHγ,ε(v) = λγ(ε)

∫ 1

0

L(u, v)dHγ,ε(v), (4)

uniformly in u /∈ [γ, γ + ε], for

λγ(ε) =
γ1−θ − γ(γ + ε)−θ

1− γ/(γ + ε)

=
(γ + ε)γ1−θ − γ(γ + ε)1−θ

ε
.

Finally the interval [γ, γ+ε] degenerates to γ as ε→ 0 and limε→0 λγ(ε) = θγ1−θ.

Remark 1. Direct integration using the distribution Hγ(x) = 0 if x < γ, Hγ(x)
= 1 if x ≥ γ, cannot give the eigenequation (4) for some λγ, except for γ = 1. This
trouble can be overcome by using the limit

limε→0 λγ(ε) = lim
ε→0

∫ 1

0
Kθ(u, v)dHγ,ε(v)∫ 1

0
L(u, v)dHγ,ε(v)

= θγ1−θ.

if 0 < u ≤ γ and setting 0
0

= θγ1−θ if γ < u < 1.

3 Canonical analysis

Let us use the notation 〈φ, ψ〉θ = Cov(φ(U), ψ(V )), 〈φ, φ〉1 = ||φ||21 = V ar(φ(U)),
where the inner product 〈·, ·〉θ ≡ 〈·, ·〉Cθ

has been defined in (2). Thus, given two
real functions φ, ψ ∈ `2([0, 1]), the squared correlation between φ(U), ψ(V ) can be
written as

ρ2(φ(U), ψ(V )) =
(Cov(φ(U), ψ(V )))2

V ar(φ(U))V ar(ψ(V ))

=
(
∫

I2 Kθ(u, v)dφ(u)dψ(v))2∫
I2 L(u, v)dφ(u)dφ(v)

∫
I2 L(u, v)dψ(u)dψ(v)

.

=
〈φ, ψ〉2θ

〈φ, φ〉1 〈ψ, ψ〉1
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As Cθ(u, v) is symmetric in u, v, we have Cov(φ(U), ψ(V )) = Cov(ψ(U), φ(V )),
so we can consider only canonical functions such that φ ≡ ψ.

Let us adapt the definition of canonical functions and correlations to the contin-
uous case. We define the classes

C(γ1, ε) = {Hγ,ε, γ ∈ (γ1, 1]},

C(γ1, ε)
⊥ = {φ | 〈φ,Hγ,ε〉θ = 0, γ ∈ (γ1, 1]}.

Then given C(γ1, ε) we should seek φ2 such that

ρ(φ2(U), φ2(V )) = maximum constrained to φ2 ∈ C(γ1, ε)
⊥.

Next, we evaluate

〈Hγ1,ε,Hγ2,ε〉θ =

∫ 1

0

∫ 1

0

Kθ(u, v)dHγ1,ε(u)dHγ2,ε(v).

On one hand∫ 1

0

Kθ(u, v)dHγ2,ε(v) =

 u[γ1−θ
2 − γ2(γ2 + ε)−θ] if 0 < u < γ2,

γ[u1−θ − u(γ + ε)−θ] if γ2 ≤ u ≤ γ2 + ε,
0 if 0 < γ2 + ε < u < 1.

On the other hand, if γ1 + ε < γ2, where ε is arbitrarily small,

〈Hγ1,ε,Hγ2,ε〉θ =
∫ γ2

0
u[γ1−θ

2 − γ2(γ2 + ε)−θ]dHγ1,ε(u)

+
∫ γ2+ε

γ2
γ2[u

1−θ − u(γ2 + ε)−θ]dHγ1,ε

+
∫ 1

γ2
0dHγ1,ε(u)

= 0.

However ∫ γ

0
u[γ1−θ − γ(γ + ε)−θ]dHγ,ε(u) = 0,∫ 1

γ+ε
0dHγ,ε(u) = 0,∫ γ+ε

γ
γ[u1−θ − u(γ + ε)−θ]dHγ,ε(u) = γ(γ1−θ − γ(γ + ε)−θ).

Thus
〈Hγ,ε,Hγ,ε〉θ = γ(γ1−θ − γ(γ + ε)−θ),

〈Hγ,ε,Hγ,ε〉1 = γ(1− γ(γ + ε)−1).
(5)

where 〈Hγ,ε,Hγ,ε〉1 = V ar(Hγ,ε(U)). Therefore 〈Hγ1,ε, Hγ2,ε〉θ = 0 whereas 〈Hγ,ε,Hγ,ε〉θ =
||Hγ,ε||2θ 6= 0.

Theorem 2. The set of canonical functions and canonical correlations is (φγ, λγ),
0 ≤ γ ≤ 1, where φγ is the indicator of γ and λγ = θγ1−θ.
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Proof. Integrating (4) with respect to dHγ,ε(u) we get ρ(Hγ,ε(U),Hγ,ε(V )) = λγ(ε),
which tends to λγ = θγ1−θ as ε→ 0. We can find the same correlation using (5).

We have 〈Hγ1,ε,Hγ,ε〉θ = Cov(Hγ1,ε(U),Hγ,ε(V )) = 0 if γ 6= γ1. Thus Hγ,ε ∈
C(γ1, ε)

⊥ and

lim
ε→0

sup
γ≤γ1

ρ(Hγ,ε(U),Hγ,ε(V )) = sup
γ≤γ1

ρ(φγ(U), φγ(V ))

is attained at γ1. This maximal correlation constrained to γ < γ1 is the eigenvalue
θγ1−θ

1 . Then, as ε→ 0, we get C(γ1) = {φγ|γ ∈ (γ1, 1]} and φγ′ ∈ C(γ1)
⊥ if γ′ < γ1.

To check the maximal correlation, let g(U) be a function of U, where g ∈ `2([0, 1])
is continuous. We can suppose g ≥ 0. Define

gn(ω) =
n∑

i=1

g(vi)Hvi,ε(ω),

where 0 ≤ v1 < · · · < vn ≤ 1. Then

gn(ω) = g(vi) +
∑
k<i

ε

vk + ε
g(vk) if vi ≤ ω ≤ vi + ε.

The Hvi,ε are orthogonal with respect to 〈·, ·〉θ , so ||gn||2θ =
∑n

i=1 g(vi)
2||Hvi,ε||2θ.

As λv(ε) = ||Hv,ε||2θ/||Hv,ε||21 < 1 is increasing in v, the squared correlation
ρ(gn(U), gn(V )) is

||gn||2θ
||gn||21

=

∑n
i=1 g(vi)

2||Hvi,ε||2θ∑n
i=1 g(vi)2||Hvi,ε||21

≤ ||Hvn,ε||2θ
||Hvn,ε||21

≤ λγ(ε), if vn ≤ γ.

We can take now εn = (n log n)−2 and vk = (k/n)− εn. Then, if M = max g(v),
with 0 ≤ v ≤ 1,∑

k<i

εn

vk + εn

g(vk) < Mεn

n∑
i=1

n

i
< M

(n log n+ nC)

(n log n)2
→ 0

as n→∞.Hence gn(ω) → g(ω) uniformly in ω. Thus ρ(gn(U), gn(V )) → ρ(g(U), g(V ))
and the maximum correlation with the above restrictions is attained at ρ(φγ1(U), φγ1(V )).

Corollary 1. The absolute maximum correlation is the dependence parameter θ and
the associated canonical function is φ1.

Proof. The maximum value of θγ1−θ is θ and is attained at γ = 1. Note that, at
x = 1, we can identify the indicator φ1 with the Heaviside distribution H1.
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