2,575,068 research outputs found
Journal Staff
A life cycle assessment (LCA) of a low energy / passive house in northern Sweden, including building materials and energy use is reported. The case study building is semi detached house for two families situated in Östersund (lat. 63°N), Sweden. Each apartment having a floor space of 160 m2 divided on two floors. The building was constructed during 2010 with a design meeting the requirements for Swedish passive houses as defined by the Forum for energy efficiency buildings (FEBY) and the Swedish center for zero energy houses (SCNH).When it comes to more sustainable buildings, energy use in the build environment has been in focus for some time. The life cycle assessment in this study reveals that the building materials can contribute significantly to environmental burdens of a residential building in northern Sweden. Energy efficiency, efficient use of good building materials and issues of appropriate design need to be discussed in the same context to move toward a more sustainable built environment.For energy efficient buildings in a energy system with renewably based energy carriers, building materials might give rise to a significant or even dominating part of the life cycle impact of a building. This give rise to considerations regarding choices of building materials as well as design of buildings to minimize such impact; while not forgetting social aspects impacted by building design
Nanocellulose as building block for novel materials
This thesis describes the fabrication of novel green materials using nanocellulose as
the building block. Bacterial cellulose (BC) was used as the nanocellulose
predominantly in this work. BC is highly crystalline pure cellulose with an inherent
fibre diameter in the nano-scale. A single BC nanofibre was found to possess a
Young’s modulus of 114 GPa. All these properties are highly favourable for using
BC as a nanofiller/reinforcement in green nanocomposite materials.
In this work, the surface of BC was rendered hydrophobic by grafting organic acids
with various aliphatic chain lengths. These surface-modified BC was used as nanofiller
for poly(L-lactide) (PLLA). Direct wetting measurements showed that the BC
nanofibre-PLLA interface was improved due to the hydrophobisation of BC with
organic acids. This led to the production of BC reinforced PLLA nanocomposites
with improved tensile properties. Nanocellulose can also be obtained by grinding of
wood pulp, producing nanofibrillated cellulose (NFC). The surface and bulk
properties of one type of NFC and BC were compared in this work. Furthermore, the
reinforcing ability of NFC and BC was also studied and it was observed that there is
no significant difference in the mechanical performance of NFC or BC reinforced
nanocomposites.
A novel method based on slurry dipping to coat sisal fibres with BC was developed
to modify the surface of natural fibres. This method can produce either (i) a densely
BC coating layer or (ii) “hairy” BC coated sisal fibres. Randomly oriented short BC
coated sisal fibre reinforced hierarchical composites were manufactured. It was
found that hierarchical (nano)composites containing BC coated sisal fibres and BC
dispersed in the matrix were required to produce composites with improved
mechanical properties. This slurry dipping method was also extended to produce
robust short sisal fibre preforms. By infusing this preform with a bio-based
thermosetting resin followed by curing, green composites with significantly
improved mechanical properties were produced. BC was also used as stabiliser and
nano-filler for the production of macroporous polymers made by frothing of
acrylated epoxidised soybean oil followed by microwave curing
The Global Warming Potential of Building Materials: An Application of Life Cycle Analysis in Nepal
open6siThis paper analyzes the global-warming potential of materials used to construct the walls of 3 building types—traditional, semimodern, and modern—in Sagarmatha National Park and Buffer Zone in Nepal, using the life-cycle assessment approach. Traditional buildings use local materials, mainly wood and stone, while semimodern and modern buildings use different amounts of commercial materials, such as cement and glass wool. A comparison of the greenhouse gas emissions associated with the 3 building types, using as the functional unit 1 m2 of wall, found that traditional buildings release about one-fourth of the greenhouse gas emissions released by semimodern buildings and less than one-fifth of the emissions of modern buildings. However, the use of thermal insulation in the modern building walls helps to reduce the energy consumption for space heating and consequently to reduce the global warming potential. In 25 years, the total global warming potential of a traditional building will be 20% higher than that of a modern building. If local materials, such as wood, are used in building construction, the emissions from production and transportation could be dramatically reduced.openBhochhibhoya, Silu; Zanetti, Michela; Pierobon, Francesca; Gatto, Paola; Maskey, R. K.; Cavalli, RaffaeleBhochhibhoya, Silu; Zanetti, Michela; Pierobon, Francesca; Gatto, Paola; Maskey, R. K.; Cavalli, Raffael
Building Materials Sales System Application Pda Ud.anniezh by Using Microsoft Visual Foxpro 9.0
On the application of sales and sales reports provide convenience to the user to input the data and then process them and produce desired outputs. In the implementation of data processing using computer applications using Microsoft Visual FoxPro 9.0. The sales process is still manual UD.Anniezh previously experienced many difficulties in implementing the sales process, especially in making sales report that is less accurate, effective and efficient. Therefore, the authors tried to make an application program on UD.Anniezh sales system by utilizing the facilities available in Microsoft Visual FoxPro 9.0 to make the sales process and simplify the checkout in the preparation of reports to be submitted to the leaders
Enabling Self-aware Smart Buildings by Augmented Reality
Conventional HVAC control systems are usually incognizant of the physical
structures and materials of buildings. These systems merely follow pre-set HVAC
control logic based on abstract building thermal response models, which are
rough approximations to true physical models, ignoring dynamic spatial
variations in built environments. To enable more accurate and responsive HVAC
control, this paper introduces the notion of "self-aware" smart buildings, such
that buildings are able to explicitly construct physical models of themselves
(e.g., incorporating building structures and materials, and thermal flow
dynamics). The question is how to enable self-aware buildings that
automatically acquire dynamic knowledge of themselves. This paper presents a
novel approach using "augmented reality". The extensive user-environment
interactions in augmented reality not only can provide intuitive user
interfaces for building systems, but also can capture the physical structures
and possibly materials of buildings accurately to enable real-time building
simulation and control. This paper presents a building system prototype
incorporating augmented reality, and discusses its applications.Comment: This paper appears in ACM International Conference on Future Energy
Systems (e-Energy), 201
Improving Building Energy Efficiency through Measurement of Building Physics Properties Using Dynamic Heating Tests
© 2019 the author. Licensee MDPI, Basel, Switzerland.Buildings contribute to nearly 30% of global carbon dioxide emissions, making a significant impact on climate change. Despite advanced design methods, such as those based on dynamic simulation tools, a significant discrepancy exists between designed and actual performance. This so-called performance gap occurs as a result of many factors, including the discrepancies between theoretical properties of building materials and properties of the same materials in buildings in use, reflected in the physics properties of the entire building. There are several different ways in which building physics properties and the underlying properties of materials can be established: a co-heating test, which measures the overall heat loss coefficient of the building; a dynamic heating test, which, in addition to the overall heat loss coefficient, also measures the effective thermal capacitance and the time constant of the building; and a simulation of the dynamic heating test with a calibrated simulation model, which establishes the same three properties in a non-disruptive way in comparison with the actual physical tests. This article introduces a method of measuring building physics properties through actual and simulated dynamic heating tests. It gives insights into the properties of building materials in use and it documents significant discrepancies between theoretical and measured properties. It introduces a quality assurance method for building construction and retrofit projects, and it explains the application of results on energy efficiency improvements in building design and control. It calls for re-examination of material properties data and for increased safety margins in order to make significant improvements in building energy efficiency.Peer reviewedFinal Published versio
Integrating Deconstruction and Recycling Into the Demolition Process in Buffalo, NY
Buffalo’s Comprehensive Plan currently calls for the demolition of 10,000 buildings over a period of ten years. While demolition contractors may recycle a small percentage of the waste created from demolitions, the process generates a great deal of waste that ends up in landfills. Many of the materials that are thrown away after a building is demolished are either reusable or recyclable. In order to lessen the negative environmental impact of building demolition, Buffalo needs to encourage demolition contractors to reuse and recycle more building materials. Even more effective than encouragement is requirement. Buffalo should require a minimum level of recycling in all its demolition contracts
Building Materials Composition Influence to Sound Transmission Loss STL Reduction
Abstract. The development of the airport always causes the noise impact to the surrounding environment.1 Housing close to the airport will be annoyed by the aircraft noise, especially if the building is not added by absorber building materials. Housing lay out towards the runways as noise sources is also an aspect that should be considered. This research resulted building models equipped by simple material compositions that had capability in reducing the airport noise
optimally. The decrease of the noise level found out from the research is caused by the value of Sound Transmission Loss (STL) of the building materials composition. The models of housing are laid out with a number of specific orientation angles towards the runway and resulted values of the highest noise level reduction
- …
