59,983 research outputs found
Primary thermometry in the intermediate Coulomb blockade regime
We investigate Coulomb blockade thermometers (CBT) in an intermediate
temperature regime, where measurements with enhanced accuracy are possible due
to the increased magnitude of the differential conductance dip. Previous
theoretical results show that corrections to the half width and to the depth of
the measured conductance dip of a sensor are needed, when leaving the regime of
weak Coulomb blockade towards lower temperatures. In the present work, we
demonstrate experimentally that the temperature range of a CBT sensor can be
extended by employing these corrections without compromising the primary nature
or the accuracy of the thermometer.Comment: 8 pages, 4 figure
Analysis of Polyethylene Glycol in the α-Hemolysin Nanopore
Nanopores have been shown to be a useful analytical tool for single molecule detection. They have been used to study the composition of DNA and other molecules of interest. These pores are usually α-hemolysin which is a toxin from Staphylococcus aureus or more recently nanoscale synthetic solid state pores. Now we are beginning to look at other molecules or proteins by sending them into the nanopores and measuring a characteristic partial current blockade. In this thesis we look at polyethylene glycol (PEG) as it enters and blocks current through a single alpha hemolysin pore. We report the effects of ionic strength, PEG size, and applied voltage on the depth and duration of the current blockades. We also apply autocorrelation analysis on the arrival times of PEG molecules to the pore see if we can identify if the PEG is translocating through the pore or escaping from the same side it enters. This suggests a new approach to current blockade analysis
Correlated photon dynamics in dissipative Rydberg media
Rydberg blockade physics in optically dense atomic media under the conditions
of electromagnetically induced transparency (EIT) leads to strong dissipative
interactions between single photons. We introduce a new approach to analyzing
this challenging many-body problem in the limit of large optical depth per
blockade radius. In our approach, we separate the single-polariton EIT physics
from Rydberg-Rydberg interactions in a serialized manner while using a
hard-sphere model for the latter, thus capturing the dualistic particle-wave
nature of light as it manifests itself in dissipative Rydberg-EIT media. Using
this approach, we analyze the saturation behavior of the transmission through
one-dimensional Rydberg-EIT media in the regime of non-perturbative dissipative
interactions relevant to current experiments. Our model is able to capture the
many-body dynamics of bright, coherent pulses through these strongly
interacting media. We compare our model with available experimental data in
this regime and find good agreement. We also analyze a scheme for generating
regular trains of single photons from continuous-wave input and derive its
scaling behavior in the presence of imperfect single-photon EIT.Comment: Final version. 6 pages, 4 figures (+ Supplemental Material; 7 pages,
3 figures
Nanofiber-based optical trapping of cold neutral atoms
We present experimental techniques and results related to the optimization
and characterization of our nanofiber-based atom trap [Vetsch et al., Phys.
Rev. Lett. 104, 203603 (2010)]. The atoms are confined in an optical lattice
which is created using a two-color evanescent field surrounding the optical
nanofiber. For this purpose, the polarization state of the trapping light
fields has to be properly adjusted. We demonstrate that this can be
accomplished by analyzing the light scattered by the nanofiber. Furthermore, we
show that loading the nanofiber trap from a magneto-optical trap leads to
sub-Doppler temperatures of the trapped atomic ensemble and yields a
sub-Poissonian distribution of the number of trapped atoms per trapping site
Applications of atomic ensembles in distributed quantum computing
Thesis chapter. The fragility of quantum information is a fundamental constraint faced by anyone trying to build a quantum computer. A truly useful and powerful quantum computer has to be a robust and scalable machine. In the case of many qubits which may interact with the environment and their neighbors, protection against decoherence becomes quite a challenging task. The scalability and decoherence issues are the main difficulties addressed by the distributed model of quantum computation. A distributed quantum computer consists of a large quantum network of distant nodes - stationary qubits which communicate via flying qubits. Quantum information can be transferred, stored, processed and retrieved in decoherence-free fashion by nodes of a quantum network realized by an atomic medium - an atomic quantum memory. Atomic quantum memories have been developed and demonstrated experimentally in recent years. With the help of linear optics and laser pulses, one is able to manipulate quantum information stored inside an atomic quantum memory by means of electromagnetically induced transparency and associated propagation phenomena. Any quantum computation or communication necessarily involves entanglement. Therefore, one must be able to entangle distant nodes of a distributed network. In this article, we focus on the probabilistic entanglement generation procedures such as well-known DLCZ protocol. We also demonstrate theoretically a scheme based on atomic ensembles and the dipole blockade mechanism for generation of inherently distributed quantum states so-called cluster states. In the protocol, atomic ensembles serve as single qubit systems. Hence, we review single-qubit operations on qubit defined as collective states of atomic ensemble. Our entangling protocol requires nearly identical single-photon sources, one ultra-cold ensemble per physical qubit, and regular photodetectors. The general entangling procedure is presented, as well as a procedure that generates in a single step Q-qubit GHZ states with success probability p(success) similar to eta(Q/2), where eta is the combined detection and source efficiency. This is signifcantly more efficient than any known robust probabilistic entangling operation. The GHZ states form the basic building block for universal cluster states, a resource for the one-way quantum computer
Intruder mobility in a vibrated granular packing
We study experimentally the dynamics of a dense intruder sinking under
gravity inside a vibrated 2D granular packing. The surrounding flow patterns
are characterized and the falling trajectories are interpreted in terms of an
effectivive friction coefficient related to the intruder mean descent velocity
(flow rules). At higher confining pressures i.e. close to jamming, a transition
to intermittent dynamics is evidenced and displays anomalous "on-off" blockade
statistics. A systematic analysis of the flow rules, obtained for different
intruder sizes, either in the flowing regime or averaged over the flowing and
blockade regimes, strongly suggest the existence of non-local properties for
the vibrated packing rheology.
- …