14,357 research outputs found

    On star edge colorings of bipartite and subcubic graphs

    Full text link
    A star edge coloring of a graph is a proper edge coloring with no 22-colored path or cycle of length four. The star chromatic index χst′(G)\chi'_{st}(G) of GG is the minimum number tt for which GG has a star edge coloring with tt colors. We prove upper bounds for the star chromatic index of complete bipartite graphs; in particular we obtain tight upper bounds for the case when one part has size at most 33. We also consider bipartite graphs GG where all vertices in one part have maximum degree 22 and all vertices in the other part has maximum degree bb. Let kk be an integer (k≥1k\geq 1), we prove that if b=2k+1b=2k+1 then χst′(G)≤3k+2\chi'_{st}(G) \leq 3k+2; and if b=2kb=2k, then χst′(G)≤3k\chi'_{st}(G) \leq 3k; both upper bounds are sharp. Finally, we consider the well-known conjecture that subcubic graphs have star chromatic index at most 66; in particular we settle this conjecture for cubic Halin graphs.Comment: 18 page

    Edge and total colourings of graphs

    Get PDF
    Die vorliegenden Arbeit enthält Ergebnisse zu Kanten- und Totalfärbungen von Graphen sowie verschiedenen Variationen dieser Färbungen. Eine Kantenfärbung eines Graphen G ist eine Zuordnung von Farben zu den Kanten von G, so dass adjazente Kanten unterschiedliche Farben erhalten. Eine Totalfärbung ist eine Färbung der Knoten und Kanten von G, so dass adjazente Knoten, adjazente Kanten sowie ein Knoten und eine inzidente Kante jeweils unterschiedlich gefärbt werden. Der chromatische Index bzw. die totalchromatische Zahl von G bezeichnen die kleinste Anzahl von Farben, mit denen G kantenfärbbar bzw. totalfärbbar ist. In dieser Arbeit wird unter anderem die totalchromatische Zahl zirkulanter Graphen mit Maximalgrad 3 bestimmt sowie ein Algorithmus entwickelt, der alle planaren kritischen Graphen der Kantenfärbung mit bis zu 12 Knoten konstruiert und darstellt. Das Konzept der Kreisfärbung von Graphen wird von Knoten- auf Kanten- und Totalfärbung übertragen; Eigenschaften des kreischromatischen Index und der kreistotalchromatischen Zahl werden bewiesen und exakte Werte für einige Graphenklassen ermittelt. Die listenchromatische Vermutung wird für outerplanare Graphen mit Maximalgrad >4 bewiesen. Die Konzepte der (a,b)- und (a,b,r)-Listen- färbung werden von Knotenfärbung auf Kantenfärbung übertragen; es werden Eigenschaften dieser Färbungen und Ergebnisse für einzelne Graphenklassen hergeleitet.This thesis contains results for edge and total colourings as well as for some variations of these colourings. An edge colouring of a graph G is an assignment of colours to the edges of G such that adjacent edges are coloured differently. A total colouring is a colouring of the vertices and edges of G such that adjacent vertices, adjacent edges as well as a vertex and an incident edge are coloured differently. The chromatic index or the total chromatic number of G denote the minimum number of colours such that G admits an edge colouring or a total colouring, respectively. Results in this thesis are - among others - the total chromatic number of circulant graphs with maximum degree 3 and an algorithm to construct and draw all planar critical graphs with at most 12 vertices. The concept of circular colourings is transferred from vertex to edge and total colourings. Properties of the circular chromatic index and the circular total chromatic number are proven and exact values are determined for some classes of graphs. The list chromatic conjecture is confirmed for outerplanar graphs with maximum degree >4; the concepts of (a,b)- and (a,b,r)-list colourings are transferred from vertex to edge colouring and properties of these colourings as well as results for special classes of graphs are given

    Local Irregularity Conjecture vs. cacti

    Full text link
    A graph is locally irregular if the degrees of the end-vertices of every edge are distinct. An edge coloring of a graph G is locally irregular if every color induces a locally irregular subgraph of G. A colorable graph G is any graph which admits a locally irregular edge coloring. The locally irregular chromatic index X'irr(G) of a colorable graph G is the smallest number of colors required by a locally irregular edge coloring of G. The Local Irregularity Conjecture claims that all colorable graphs require at most 3 colors for locally irregular edge coloring. Recently, it has been observed that the conjecture does not hold for the bow-tie graph B [7]. Cacti are important class of graphs for this conjecture since B and all non-colorable graphs are cacti. In this paper we show that for every colorable cactus graph G != B it holds that X'irr(G) <= 3. This makes us to believe that B is the only colorable graph with X'irr(B) > 3, and consequently that B is the only counterexample to the Local Irregularity Conjecture.Comment: 27 pages, 7 figure

    Local Graph Coloring and Index Coding

    Full text link
    We present a novel upper bound for the optimal index coding rate. Our bound uses a graph theoretic quantity called the local chromatic number. We show how a good local coloring can be used to create a good index code. The local coloring is used as an alignment guide to assign index coding vectors from a general position MDS code. We further show that a natural LP relaxation yields an even stronger index code. Our bounds provably outperform the state of the art on index coding but at most by a constant factor.Comment: 14 Pages, 3 Figures; A conference version submitted to ISIT 2013; typos correcte

    Strong chromatic index of sparse graphs

    Full text link
    A coloring of the edges of a graph GG is strong if each color class is an induced matching of GG. The strong chromatic index of GG, denoted by χs′(G)\chi_{s}^{\prime}(G), is the least number of colors in a strong edge coloring of GG. In this note we prove that χs′(G)≤(4k−1)Δ(G)−k(2k+1)+1\chi_{s}^{\prime}(G)\leq (4k-1)\Delta (G)-k(2k+1)+1 for every kk-degenerate graph GG. This confirms the strong version of conjecture stated recently by Chang and Narayanan [3]. Our approach allows also to improve the upper bound from [3] for chordless graphs. We get that % \chi_{s}^{\prime}(G)\leq 4\Delta -3 for any chordless graph GG. Both bounds remain valid for the list version of the strong edge coloring of these graphs
    • …
    corecore