87,253 research outputs found

    Orthogonal, metal-free surface modification by strain-promoted azide–alkyne and nitrile oxide–alkene/alkyne cycloadditions

    Get PDF
    In this article we present a fast and efficient methodology for biochemical surface patterning under extremely mild conditions. Micropatterned azide/benzaldoxime-surfaces were prepared by microcontact printing of a heterobifunctional cyclooctyne oxime linker on azide-terminated self-assembled monolayers (SAMs). Strain-promoted azide–alkyne cycloaddition (SPAAC) in combination with microcontact printing allows fast and effective surface patterning. The resulting bifunctional azide/oxime substrates could successfully be used for metal-free, orthogonal immobilization of various biomolecules by 1,3-dipolar cycloadditions at room temperature. Azide-decorated areas were modified by reaction with a cyclooctyne-conjugate using SPAAC, while benzaldoxime-decorated areas were activated by in situ oxidation to the reactive nitrile oxides and subsequent nitrile oxide cycloaddition with alkene- and alkyne-functionalized bioconjugates. In addition, orthogonal double immobilization was achieved by consecutive and independent SPAAC and nitrile oxide cycloadditions

    Core-Clickable PEG-Branch-Azide Bivalent-Bottle-Brush Polymers by ROMP: Grafting-Through and Clicking-To

    Get PDF
    The combination of highly efficient polymerizations with modular "click" coupling reactions has enabled the synthesis of a wide variety of novel nanoscopic tructures. Here we demonstrate the facile synthesis of a new class of clickable, branched nanostructures, polyethylene glycol (PEG)-branch-azide bivalent-brush polymers, facilitated by "graft-through" ring-opening metathesis polymerization of a branched norbornene-PEG-chloride macromonomer followed by halide-azide exchange. The resulting bivalent-brush polymers possess azide groups at the core near a polynorbornene backbone with PEG chains extended into solution; the structure resembles a unimolecular micelle. We demonstrate copper-catalyzed azide-alkre cycloaddition (CuAAC) "click-to" coupling of a photocleavable doxorubicin (DOX)-alkyne derivative to the azide core. The CuAAC coupling was quantitative across a wide range of nanoscopic sizes (similar to 6-similar to 50 nrn); UV photolysis of the resulting DOX-loaded materials yielded free DOX that was therapeutically effective against human cancer cells

    Taming tosyl azide: the development of a scalable continuous diazo transfer process

    Get PDF
    Heat and shock sensitive tosyl azide was generated and used on demand in a telescoped diazo transfer process. Small quantities of tosyl azide were accessed in a one pot batch procedure using shelf stable, readily available reagents. For large scale diazo transfer reactions tosyl azide was generated and used in a telescoped flow process, to mitigate the risks associated with handling potentially explosive reagents on scale. The in situ formed tosyl azide was used to rapidly perform diazo transfer to a range of acceptors, including β-ketoesters, β-ketoamides, malonate esters and β-ketosulfones. An effective in-line quench of sulfonyl azides was also developed, whereby a sacrificial acceptor molecule ensured complete consumption of any residual hazardous diazo transfer reagent. The telescoped diazo transfer process with in-line quenching was used to safely prepare over 21 g of an α-diazocarbonyl in >98% purity without any column chromatography

    An MS-CASPT2 Study of the Photodecomposition of 4- Methoxyphenyl Azide. Role of Internal Conversion and Intersystem Crossing

    Get PDF
    Aryl azides photochemistry is strongly dependent on the substituent relative position, as has been studied by time resolved resonant Raman (TR3) spectroscopy for 4-methoxyphenyl azide and its isomer 3-methoxyphenyl azide. When irradiated at 266 nm, the former results in 4,4’-dimethoxyazobenzene whereas the latter forms 1,2-didehydroazepine. It is proposed that the key step of the reactions is the formation of a nitrene derivative. Recently, it has been proposed by us that nitrenes might have a relevant role in the Surface-Enhanced Raman Scattering (SERS) of p-aminothiophenol, however, the molecular mechanism is not well known in neither of these cases. Therefore, we studied the photodecomposition of 4-methoxyphenyl azide using multiconfigurational self-consistent field methods (MC-SCF) with the CAS-SCF and MS-CASPT2 approximations and calculated the resonant Raman spectra of the relevant species using a multi-state version of Albrecht’s vibronic theory. The results propose that the reaction follows a two steps sequence after irradiation at 266 nm: an intersystem crossing 21A’/23A’’ which decays through a 21A’/21A’’ conical intersection producing molecular nitrogen and triplet 4-methoxyphenyl nitrene in its ground state.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Acid catalyzed reactions of alpha and beta styryl azides

    Get PDF
    Acid degradation of alpha and beta styryl azide

    The uptake of protons by heme-linked ionizable groups on azide binding to methemoglobin

    Get PDF
    When azide ion reacts with methemoglobin in unbuffered solution the pH of the solution increases. This phenomenon is associated with increases in the pK values of heme-linked ionizable groups on the protein which give rise to an uptake of protons from solution. We have determined as a function of pH the proton uptake, Ah', on azide binding to methemoglobin at 20°C. Data for methemoglobins A (human), guinea pig and pigeon are fitted to a theoretical expression based on the electrostatic effect of three sets of heme-linked ionizable groups on the binding of the ligand. From these fits the pK values of heme-linked ionizable groups are obtained for liganded and unliganded methemoglobins. In unliganded methemoglobin pK1, which is associated with carboxylic acid groups, ranges between 4.0 and 5.5 for the three methemoglobins; pK,, which is associated with histidines and terminal amino groups, ranges from 6.2 to 6.7. In liganded methemoglobin pK1 lies between 5.8 and 6.3 and pK, varies from 8.1 to 8.5. The pH dependences of the apparent equilibrium constants for azide binding to the three methemoglobins at 20°C are well accounted for with the pK values calculated from the variation of Ah' with pH

    Subunit iron spin heterogeneity in human aquomethemoglobin A

    Get PDF
    On the basis of a reaction scheme in which the ligand binding steps are preceded by fast iron spin transitions (Okonjo, K.O. (1980) Eur. J. Biochem. 105, 329-334; Iwuoha, E.I. and Okonjo, K.O. (1985) Biochim. Biophys. Acta 829, 327-334), the spin equilibrium constants of methemoglobin subunits are calculated from kinetic and equilibrium binding parameters with azide ion as ligand. The results demonstrate the existence of thermodynamic spin heterogeneity within the tetramer
    • …
    corecore