9 research outputs found

    栽培季節對落花生品種間莢果黑斑病之影響

    Get PDF
    [[abstract]]以20個落花生品種(系),連續2年4期作在農業試驗所之農場進行試驗,以探討栽培季節對落花生品種間莢果黑斑病之影響。結果顯示莢果黑斑病罹病度極容易受品種、年度及期作之影響;感病及中等抗病的品種(系)會因連續栽培而增加莢果黑斑病罹病度之趨勢,而較抗病之品種(系)影響較小;期作間之相關只有秋作與其後之期作間具顯著相關性;外表型相關,只有在春作莢果黑斑病罹病度與葉斑病呈顯著正相關,而與莢果及籽粒產量則呈顯著負相關

    落花生種原抗莢果黑斑病之篩選

    No full text

    Genetic studies on yield, pod, and kernel characters in the progenies of a diallel-cross among the three botanical types of peanut

    No full text
    一、目的:落花生依生長習性可分為兩個亞種(ssp.hypogaea 及ssp.fastigiata) , 每個亞種包括兩個分類品種,也可分為三種植物型(Spanish, Valencia, Virginia) ,各型間具有不同特性且能互相雜交,在雜交育種上常被利用,以結合各優良特性於 一體(Nordon 1973) 。本試驗即利用分屬於三種植物型各兩品種,分別由南美洲六個 變異中心引進,進行6×6全互交(不包括反交),以探討①六個變異性大的親本莢果 及籽粒性狀的組合力及雜種優勢②各性狀之遺傳率及性狀相關③以及親本的利用價值 ④並進行型間雜交組合的比較,以供將來育種之參考。 二、研究方法:由6×6半互交所得之F 及F 雜交後裔各15個組合,加上六個親本共21 個參試,分別於1989年及1990年兩年之春作在田間進行試驗,田間設計採逢機完全區 集法,行株距45×20公分,行長3 公尺,分別為4 重復及6 重復,在成熟期分別逢機 收獲親本及F 各40株,親本及F 各45株及200 株,進行調查單株性狀,包括:莢數、 莢重、粒數、粒重、籽粒飽滿度及重,以及莢果籽粒大小(長及寬),共計10個項目 ,所得資料分別以Hayman's及Griffing's方法進行全互交分析,並進行各型間組合的 雜種優勢,自交弱勢,遺傳率及性狀間的相關性之比較。 三、研究結果:所調查之10個性狀,主要由累加性遺傳所控制,但非累加性遣傳仍佔 重要部份,在F 及F 世代分析結果均相同;但組合力分析結果,顯示F 及F 世代有很 大差異,並無相關性存在,此結果與許多報告相似(Holbrook 1990; Isleib and W- ynne 1983; Wynne 1976);在遺傳率及性狀間相關的結果顯示,產量的遺傳率較低, 莢果及籽粒大小的遺傳率較高。在單株莢數、莢重、粒數、粒重互相呈高正相關,莢 果及籽粒大小亦互相呈正相關,但兩群間的相關性為負的或無關性,因此要同時選拔 或成高產且大莢大粒的品種較為困難

    Resistance and genetics studies for pod rot complex in peanut (Arachis hypogaea L.)

    No full text
    由於台灣落花生莢果黑斑病,在主要產區雲林縣有漸漸嚴重之趨勢,而一般認為此病害是由複雜的土壤病原菌所引起,主要有 Pythium myriotylum, Rhizoctonia solani, Sclerotium rolfsii及Fusarium solani等,為能減輕此病害之發生,探討主要病原菌及育成抗病品種為重要的方法。因此本試驗目的在探求主要病原菌、篩選抗病品系及對主要病原菌之抗病遺傳行為研究。結果摘要如下: 1. 分析雲林縣元長鄉、崙背鄉、虎尾鎮及本所試驗田等不同感病區落花生莢果之病原菌及土壤成分,結果病原菌之分離率因地點而不同,主要以F. solani及P. myriotylum兩者較重要,尤其春作以P. myriotylum較重要。莢果黑斑病地區間有差異,土壤成分亦有差異,病害因環境及品種不同而不同,且兩者具有交感作用。土壤中Fusarium spp.族群密度一般均高(2×103~10×103),且以感病田較高,不同生育期其族群密度亦有變化,但與莢果黑斑病、pH值無相關性,而Pythium spp.常偵測不到。土壤Ca含量及pH值高者,其莢果黑斑病較輕,但其相關性未達顯著,其他成分也無顯著相關性。 2. 利用本所保存的種原及引進國外抗病品種,在雲林縣元長鄉之感病試區進行抗病篩選,經過兩年半的抗莢果黑斑病篩選,顯示絕大部分的種原均感病,型態間平均以Spanish type罹病度較低,但差異不大;篩選獲得較抗病品系(<20%)共5個,其中4個屬於Valencia (VA111、VA114、VA220、VA221),1個為Virginia bunch(VB186),均來自於美洲,顯示美洲為重要的抗病品系來源,而Valencia型有較抗病的品系。 3. 為瞭解抗病品系之抗病特性,利用田間連續栽培,探討品系對期作之反應,結果品種(系)極容易受年度及期作等環境之影響,二個抗病品系 (VA221及VB186)表現較穩定;期作對莢果黑斑病並無一定相關性趨勢,顯示春、秋作影響程度類似。調查株高、節間長、子房柄長、落葉率、銹病、葉斑病、倒伏、莢殼厚度及產量等10性狀與莢果黑斑病之相關,結果在秋作性狀間均不呈顯著相關性,只在春作莢果黑斑病與葉斑病呈正相關,與產量呈負相關。 4. 為了進一步確定田間抗病品系的抗病性,以不同抗病品系在盆栽接種各種主要病原菌,及施以鈣肥與有機質肥探討對莢果黑斑病的影響,結果病害與品種、病原菌間均有交感效應,會因品種不同或病原菌不同而有變化。一般而言肥料非影響病害之因素,病原菌才是主要因素,但品種x病原菌、肥料x病原菌、品種x肥料x病原菌具有極顯著交感作用,顯示病原菌之接種效果極容易受肥料及品種之影響。抗病品系VB186仍然表現較抗病,病原菌則以p. myriotylum引起之病害最嚴重。 5. 由於病原菌間關係複雜,為了探討病原菌間的相互關係,並希望能找出較重要的一種病原菌,以作為育種及防治上之參考。分別將四種病原菌進行各種混合方式接種(因為參試品種(系)均對白絹病無抗病性,造成枯萎死亡,因此未計入)。結果品種及病原菌處理均有差異,抗病品系VB186平均罹病度最輕,P. myriotylum單獨接種病害最嚴重,而且品種與病原菌處理具有極顯著交感作用,將品種分別進行病原菌處理劃分變方分析,結果不同品種之主要為害病菌不同,栽培種TP11主要受P. myriotylum侵害,其均方值佔約80%;抗病品系VB186也是以P. myriotylum較重要;最感病品系VA179則有三種處理較重要,分別為P. myriotylum、F. solani + P. myriotylum、及R. solani。因為不同品種對於不同病原菌處理有不同之反應,很難判定病原菌間之交互作用,但以P. myriotylum為最重要病原菌。 6. 因很少品種能抗多種病害,而且不同病害其抗病機制可能不同,因此分別在溫室接種主要病原菌P. myriotylum及田間自然發病下,以全互交法及世代平均法分析抗病性之遺傳。結果在Hayman全互交法分析中,抗病性不論溫室或田間,均具有母本效應及正反交效應。莢果黑斑病的抗病性在溫室及田間均為累加性及顯性作用的結果,但溫室及田間有差異,溫室以累加性效應較重要,而田間以顯性效應較重要,在溫室的抗病性為部分顯性,而田間為超顯性。溫室為微效基因控制,田間至少有一對顯性基因控制。溫室遺傳率較高,田間遺傳率較低。在溫室抗病基因多數是顯性,在田間則多數為隱性。組合力分析結果,不論溫室或田間,其莢果黑斑病的抗病性均以累加性基因較重要,而且有正反交效應。兩個抗病品系VA221及VB186的一般組合力均為負值,為良好的育種材料;但兩個抗病品系的一般組合力有差異,顯示二個品系之抗病機制不同,以VB186較強的抗病性。由世代平均值分析結果,抗病基因具有上位性,二個雜交組合之基因交感效應不同。Summary Pod rot of peanut (Arachis hypogaea L.) occurs in many peanut growing regions in Taiwan. This disease can be caused by an array of soilborne microbes, usually considered to be of complex etiology. Pod rot can also be caused by one of several fungal pathogens acting along or in combination. Fungi that have been reported to cause pod rot are Pythium myriotylum Drechs., Rhzoctonia solani Kuhn, Fusarium solani (Mart.) Appel. & Wr., and Sclerotium rolfsii Sacc.. The purpose of this research was to evaluate the current status of pod rot main pathogen on peanut grown in Taiwan, and screening germplasm and genetics studies for pod rot resistance in peanut. The results obtained are summarized as follows: 1. The prevalence of various pod rot pathogens differs among production regions, farms, and even from crops within a given location. The F. solani was commonly isolated from infected hull pieces of peanut pod from farms or locations, and P. myriotylum was highest percentage isolated from severe rot pods or pods from spring crop season. Fusarium spp. populations density in soil of severe pod rot experimental field was higher than slight pod rot field, but were not significant different of correlation with pod rot severity or pH value or Ca concentration. 2. Over one thousand Germplasm and introduced varieties of peanut were screening for pod rot resistance at fields that had histories of supporting pod rot. Almost varieties were susceptible to pod rot, mean of pod rot for Spanish botanical type was slighter than other types. Four Valencia type varieties (VA111、VA114、VA220 and VA221)and one Virginia bunch type variety(VB186) those introduced from America had more resistance to pod rot disease(<20%). 3. Evaluated pod rot resistance character and agronomic characters for pod rot resistance varieties were cultivated continuously at a field in four crop seasons. Results crop seasons and varieties had an interaction for pod rot severity, and pods were more infected after severe pod rot disease seasons, but crop seasons were not main factor for pod rot severity. The correlation was positive for pod rot severity with leaf spot disease, were negative with pod and seed yield, others were not significant different of investigated 10 agronomic characters. 4. Treats with high concentration of Ca would reduced pod rot severity of peanut, and suggested a geocarposphere nutrient imbalance was main factor for peanut pod rot, were reported. But pod rot severity were not different effects to treat or not treat in ours researches, used a different peanut resistance varieties inoculated with four pathogens after treats with Ca and organic matter in pots. The pathogens were main factors for peanut pod rot, and P. myriotylum was most important pathogen. 5. For research pathogens interactions, four different pod rot resistance varieties were inoculated with four pathogens combined each other in pot. Highly resistance to pod rot disease variety (VB186) was low pod rot severity, but four varieties were susceptible to S. rolfsii that induced stem rot. The interactions were different in different variety with different inoculum treats alone or combinations of three pathogens. P. myriotylum was most important for pod rot severity of cultivars TP11 and resistance variety VB186, but not for other two varieties, in a component of variance analysis. 6. A diallel crosses analysis for pod rot resistance of peanut were conducted in greenhouse inoculation with P. myriotyrum and nature infected in field. Both additive and dominance effects were found significant in two sits. Additive was most important and a high heritability in greenhouse for pod rot severity, but dominance was important and low heritability in field. Partial dominance and polygene effects were found in greenhouse, but super dominance and at least one main gene were found in field. Pod rot resistance genes were mostly dominance in greenhouse, but were mostly recessive genes in field. Combining ability analysis indicated that significant variations due to the effects of general combining ability (GCA) and specific combining ability (SCA) were present for pod rot resistance, and GCA were mostly important in two sits. Maternal effects and reciprocal effects were found in two sits. Generations mean analysis indicated that epistasis were found in two crosses but different interaction effects.落花生莢果黑斑病之抗病性及其遺傳研究 Resistance and Genetics Studies for Pod Rot Complex in Peanut (Arachis hypogaea L.) 目 錄 圖目錄---------------------------------------------------- II 表目錄---------------------------------------------------- III 中文摘要-------------------------------------------------- 1 第一章 前 言--------------------------------------------- 4 第二章 前人研究------------------------------------------- 8 2.1 落花生莢果黑斑病之發生及主要病原菌之生態------------- 8 2.2 落花生種原抗病篩選----------------------------------- 17 2.3 營養要素與莢果黑斑病之關係--------------------------- 21 2.4 落花生抗病性之遺傳與育種----------------------------- 24 第三章 落花生莢果黑斑病之發生及病原菌調查----------------- 29 3.1 前言------------------------------------------------- 29 3.2 材料與方法------------------------------------------- 30 3.3 結果------------------------------------------------- 34 3.4 討論------------------------------------------------- 42 第四章 落花生種原抗莢果黑斑病品系篩選--------------------- 45 4.1 前言------------------------------------------------- 45 4.2 材料與方法------------------------------------------- 46 4.3 結果------------------------------------------------- 47 4.4 討論------------------------------------------------- 55 第五章 落花生栽培季節對品種間莢果黑斑病及其它農藝性狀 之影響--------------------------------------------- 58 5-1. 前言------------------------------------------------- 58 5-2. 材料與方法------------------------------------------- 59 5-3. 結果------------------------------------------------- 63 5-4. 討論------------------------------------------------- 68 第六章 落花生莢果黑斑病抗病品系檢定----------------------- 71 6-1. 前言------------------------------------------------ 71 6-2. 材料與方法------------------------------------------- 72 6-3. 結果------------------------------------------------- 74 6-4. 討論------------------------------------------------- 84 第七章 落花生莢果黑斑病抗病性之遺傳研究------------------- 87 7-1. 前言----------------------------------------------- 87 7-2. 材料與方法------------------------------------------- 89 7-3. 結果------------------------------------------------- 93 7-4. 討論-------------------------------------------------111 第八章 綜合討論-------------------------------------------114 英文摘要--------------------------------------------------122 參考文獻--------------------------------------------------125 圖 目 錄 Fig. 3-1. The changes of pH and population density of Fusarium spp.in soil from blooming date to harvest at Yen-chan------ 41 Fig. 3-2. The changes of pH and population density of Fusarium spp.in soil from blooming date to harvest at TARI---------- 41 Fig. 7-1. The plot of Wr/Vr (A) and standardized deviation graph (B) of Yr and Wr+Vr for pod rot severity of peanut in 5x5 diallel crosses in greenhouse------------------------------100 Fig. 7-2. The plot of Wr/Vr (C) and standardized deviation graph (D) of Yr and Wr+Vr for pod rot severity of peanut in 4x4 diallel crosses in field-----------------------------------101 Fig. 7-3. The distribution of pod rot severity in F2 progenies for two crosses--------------------------------------------108 表 目 錄 Table 3-1. The percentage of fungi isolated from infected pods in three sites----------------------------------------------35 Table 3-2. The percentage of fungi isolated from different pod rot severity of infected pods-------------------------------35 Table 3-3. Ranges and means of pod rot severity and percentage of isolated for inoculated peanut pods----------------------37 Table 3-4. The ANOVA of pod rot severity for varieties and sites in spring crop----------------------------------------37 Table 3-5. The ANOVA of pod rot severity for varieties and sites in fall crop------------------------------------------37 Table 3-6. The elemental analysis of soil and the pod rot severity in three fields----------------------------------- 39 Table 4-1. The distributions of pod rot severity for botanical types of peanut germplasm and lines in 1996 fall crop------ 48 Table 4-2. The distributions of pod rot severity for botanical types of peanut germplasm and lines in 1997 spring crop---- 48 Table 4-3. The distributions of pod rot severity for botanical types of peanut germplasm and lines in 1997 fall crop------ 49 Table 4-4. The distributions of pod rot severity for botanical types of peanut germplasm in 1998 spring crop-------------- 49 Table 4-5. The distributions of pod rot severity for botanical types of peanut germplasm in 1998 fall crop---------------- 50 Table 4-6. The mean and variance of pod rot severity for botanical types of total peanut germplasm ----------------- 52 Table 4-7. The distributions of pod rot severity for botanical types of total peanut germplasm --------------------------- 52 Table 4-8. The mean and variance of pod rot severity for original regions of peanut germplasm ---------------------- 54 Table 4-9. The distributions of pod rot severity for original regions of total peanut germplasm ------------------------- 54 Table 5-1. The expectant values of variance and covariance- 61 Table 5-2. The botanical types and origins of test peanut varieties-------------------------------------------------- 62 Table 5-3. The combined ANOVA of pod rot severity for varieties of peanut ---------------------------------------- 64 Table 5-4. The ANOVA of pod rot severity for varieties of peanut in different crop seasons -------------------------- 64 Table 5-5. The means of pod rot severity for varieties of peanut in different crop seasons--------------------------- 65 Table 5-6. The correlation among crop seasons of pod rot severity for varieties of peanut ---------------------------67 Table 5-7. Estimates of phenotypic(Rp) and genotypic(Rg) correlation between pod rot severity and agronomic characters of peanut varieties in spring crop--------------------------67 Table 5-8. Estimates of phenotypic(Rp) and genotypic(Rg) correlation between pod rot severity and agronomic characters of peanut varieties in spring crop--------------------------67 Table 6-1. The ANOVA for pod rot severity at different growth stages inoculation pathogens -------------------------------76 Table 6-2. The comparisons of pod rot severity for peanut varieties at different growth stages inoculation pathogens--76 Table 6-3. The ANOVA of pod rot severity for peanut varieties treat with fertilizers and inoculation pathogens -----------78 Table 6-4. The ANOVA for pod yield for peanut varieties treat with fertilizers and inoculation pathogens -----------------78 Table 6-5. The means of pod rot severity for peanut varieties treat with fertilizers and inoculation pathogens -----------81 Table 6-6. The means of pod yield for peanut varieties treat with fertilizers and inoculation pathogens -----------------81 Table 6-7. The ANOVA of pod rot severity for four peanut varieties inoculation three pathogens combined each others -82 Table 6-8. The means of pod rot severity for peanut varieties inoculation three pathogens combined each others --82 Table 6-9. The ANOVA components of pod rot severity for peanut varieties inoculation three pathogens combined each others -83 Table 6-10. The means of pod rot severity for peanut varieties inoculation three pathogens combined each others -----------83 Table 7-1. Means of pod rot severity for parents and F1 in diallel crosses of peanut in greenhouse and field ----------94 Table 7-2. Analysis of variance for pod rot severity in diallel crosses of peanut in greenhouse and field ------------------96 Table 7-3. Components of genetic variance and their proportions for pod rot severity of peanut in diallel crosses in greenhouse and field------------------------------------------98 Table 7-4. Combining ability analysis of variance for pod rot severity in diallel crosses of peanut in greenhouse and field -----------------------------------------------------103 Table 7-5. Estimated GCA and SCA effects for pod rot severity of six peanut parents in greenhouse -----------------------104 Table 7-6. Estimated GCA and SCA effects for pod rot severity of six peanut parents in field ----------------------------104 Table 7-7. Estimated reciprocal effects for pod rot severity of six peanut parents in greenhouse (upper triangle) and field(lower triangle)-----------------------------106 Table 7-8. Estimated G.C.A. variance associated with each parent effects for pod rot severity of six peanut parents in greenhouse ---------------------------------------106 Table 7-9. Generation means and expectant values for pod rot severity for six generation progenies of two peanut crosses----------------------------------------------------------------109 Table 7-10. Genetic parameter estimates for pod rot severity based on the three-parameter model for two peanut crosses -----------------------------------------------------------------109 Table 7-11. Genetic parameters estimates for pod rot severity based on the six-parameter model for two peanut crosses ---11

    Improvement of Peanut Varieties

    No full text
    本試驗之目的係以人工雜交育種方法,結合分具於兩親本之優良農藝性狀,創育新雜交組合,進而培育雜交後代、單株選拔及品系產量比較試驗等,以期育成豐產、大粒、品質佳、抗病蟲害與適合機械化栽培之新品種,來提高本省落花生之單位面積產量,減低病蟲為害,以確保落花生之產量與品質,並降低生產成本。88年秋作進行抗莢果黑斑病、鮮莢煮食、焙炒加工等育種目標之雜交組合工作,計有TAINAN 11 × VA 221等36個組合,共計獲得464粒雜交種子。89年春作進行抗莢果黑斑病育種目標之雜交組合工作,計有TAINUNG 6 × 96F-BG等14個組合,共計獲得459粒雜交種子。歷年雜交所得之F2~F5世代後裔皆採用混合法進行培育,88年秋作培育131個組合,並於F5世代混合集團內進行選拔,選獲446個優良單株。89年春作計培育140個組合,並於F4、F5世代混合集團內標進行選拔,選獲520個優良單株。88年秋作株行試驗選獲96F-BA-04、97S-PA-01等170個具有優良農藝特性之品系。89年春作株行試驗選獲96F-BA-04、97S-PB-50、97F-Pl-54、立枝仔-46等143個具有優良農藝特性之品系。第一年品系產量比較試驗:88年秋作選獲15個優良品系,皆較對照種台南11號之莢果產量,增產1.3~13.3%,且皆具大粒莢形特性。89年春作選獲18個優良品系,皆較對照種台南11號之莢果產量增產3.1~14.1%,且皆具大粒莢形。第二年品系產量比較試驗:88年秋作選獲5個品系(94F-D-06、94F-E-09、94F-E-17、94S-C-04、94S-E-09)之平均公頃莢果與籽粒產量皆較對照種台南11號增產2.1~5.6%與0.3~6.6%,且皆具大粒莢形。89年春作選獲8個品系(94S-B-04、94S-X-06、95F-G-01、96S-BA-03、96S-BC-02、96S-BE-04、96S-BN-03、97F-P1-02),皆較對照種台南11號之平均公頃莢果與籽粒產量,增產5.8~24.2%與6.9~26.5%,且皆具大粒莢形特性。第三年品系產量比較試驗:88年秋作選獲6個品系(9lF-BJ-05、93S-BN-05、93S-BC-04、93F-BE-01、93F-BD-01、94S-Q-02)皆較對照種台南11號之平均公頃莢果、籽粒產量增產4.9~8.9%與4.6~11.3%,且皆具大粒莢形特性。89年春作選獲1個品系(93F-BD-01)較對照種台南11號之平均公頃莢果與籽粒產量,增產12.4%與9.3%,且具大粒莢形特性。區域試驗:選獲農育44號、南改系163號等3個品系較對照種台南11號之莢果產量增產3.1~12.2%,且具大粒莢形。 The peanut improvement project of Taiwan Agricultural Research Institute seeks to develop superior lines, emphasizing selection for the following characteristics: tolerance to pod rot, high-yielding, large pod and seed size, and the best quality. Hybridization was used for incorporating good characteristics from the parents. In the fall crop season of 1999. 464 hybrid seeds were obtained from 36 new cross combinations. 459 hybrid seeds were obtained from fourteen new cross combinations in the spring crop season of 2000. The bulk method was applied for propagating the hybrid progenies in the F2-F5 generations. Single plant selection was made at the F5 generation and was based on the objective of breeding. At F5 generation, 446 and 520 superior plants were selected in the fall crop season of 1999 and the spring crop season of 2000, respectively. In the plant-to-row trial, 170 and 143 elite lines were selected in the fall crop season of 1999 and the spring crop season of 2000, respectively. They were higher pod yield than the check, Tainan 11. In the preliminary yield trial (PYT), fifteen elite lines in the fall crop season of 1999 were 1.3-13.3 % higher in pod yield than the check, Tainan 11. The eighteen superior lines outyielded the check, Tainan 11, in the 2000 spring PYT. These lines were 3.1-13.3 % higher in pod yield than Tainan 11. They had large pod size. In the intermediate yield trial (JYT), five elite lines with large pod size were 2.1-5.6 % higher in pod yield and 0.3-6.6 % higher in kernel yield than the check, Tainan 11, in the fall crop season of 1999. Eight lines in the 2000 spring IYT were higher than Tainan 11 by 5.8-24.2 % in pod yield and 6.9-26.5 % in seed yield. In the advanced yield trial (AYT), there were six superior lines , 91F-BJ-05, 93S-BN-05 etc. selected in the fall crop season of 1999. These lines with large pod size outyielded the check, Tainan 11, by 4.9-8.9 % in pod yield and 4.6-11.3 % in kernel yield. One entry, 93F-BD-01, from the 2000 spring AYT were superior to Tainan 11 by 4.9-8.9% in pod yield and 4.6-11.3% in seed yield. The three best lines among the regional yield trial during the spring crop season of 1998-2000 significantly outyielded the check, Tainan 11, by 3.1-12.2 % in mean pod yield. They were large pod size

    (53(2):87-96)Evaluation of the Combining Ability of Inbred Lines Derived from Purple Waxy Maize (Zea mays L.) Germplasm

    No full text
    在玉米育種過程中,自交系組合力的相對大小之檢測是一項極為重要且必須的工作。本研究以五個非糯性的白玉米自交系為檢定親,進行台中霧峰地區所蒐集的黑糯族群PB自交分離至S5世代自交系之組合力檢定,結果顯示非糯性檢定親中以TNWF、CML76及TNWG三者具有較高的變異係數值(CV%),同時其變異範圍也較大,視為較佳之檢定親,可有效的把黑糯自交系組合力的優劣加以區分。而受檢親PB黑糯族群所分離的自交系38個中,就鮮果穗的一般組合力之相對大小而論,以PB4、PB5、PB13、PB15、PB16、PB17、PB19、PB24、PB29 及PB31等10個表現較佳,加以選留作為黑糯雜交育種材料。Determination of the relative combining ability of purple waxy maize (Zea mays L.) inbred lines is all important feature of applied corn breeding program. Combining ability measured by the relative performance of a line in testcrosses to five testers. CIMMYT CML76 inbred line and Tainan-white inbred lines (TNWE, TNWF, TNWG, TNWH) with white non waxy endosperm were used as tester. The inbred line were derived from Taichung purple waxy (PB) population, evaluated at S5 generation. The results indicated significant differences existed in the general combining ability of agronomic characters among tester and tested inbred lines. Based on the coefficient variation among testers, estimate of combining ability, the CML76, TNWF and TNWG inbred lines were the better testers for this trial. The inbred line, PB4, PB5, PB13, PB15, PB16, PB17, PB19, PB24, PB29 and PB31 had the positive general combining ability, and that can used in hybrid breeding program in future

    (37(3):278-290)Yield Stability Studies in Peanut

    No full text
    本研究以落花生新品系十種,加上臺農4號及臺南選9號為對照,自民國73年春作至74年秋作二年間,春作在九個地區,秋作在四個地區進行區域試驗。資料經以十種隱定性介量分析,探討莢果及籽粒產量之穩定性及尋求適當的穩定性分析方法。結果摘要如下: 1﹒根據變方分析結果,春作與秋作之莢果產量及籽粒產量二性狀,在品種、環境及品種X環境之交感效應均極顯著。 2﹒莢果及籽粒產量穩定性均高的品系,在春作計有南改系133及134號;秋作僅有南改系133號,唯其產量在平均左右,利用價值不高。南改系132號產量高,但秋作甚不穩定。 3﹒不同穩定性介量反應不同功能之穩定性,結果頗難一致。 4﹒本研究結果建議:區域試驗資料之統計分析,同時採用x、cv、b及δ2等四個介量,可兼顧品種之產量及穩定性,而達到計算簡單又評估準確的效果。 Ten newly developed peanut lines and two check varieties were grown in replicated regional yield trials at nine locations in spring crop and four locations in fall crop for a period of two years (1984-1985). Yield stability by ten stability parameters were investigated. (1) The combined analysis of variance for pod and kernel yield indicated that the mean squares for entry, environment, and entry x environment interactions were all highly significant. (2) Nan-kai-si 133 and 134 had the best pod and kernel yield stability over all environments in spring crop, while Nan-kai-si 133 also had the best pod and kernel yield stability over all environments in fall crop. However, their yields were not acceptable. Nan-kai-si 132 had high yield but was lower in stability in fall crop. (3) Different aspects of stability do not always provide a complete picture of the responses. (4) This research indicates that coefficient of variation (cv), regression coefficient (b), deviation from regression (δ2) and mean yield (X) are useful parameters in the selection of stable high-yielding varieties in peanut regional trials if simplicity of calculation and precision of evaluation are concerned

    (46(2):132-141)Effects of Genotype, Population Density and Harvest Date on Pod Maturity of Peanut

    No full text
    本試驗採用四個落花生基因型,包括Spanish type 的臺南11號及臺農6號與Virginia type的立枝仔及VB313為材料,分別於1995年春作及秋作種植於臺灣省農業試驗所之試驗農場,栽培密度分成株距10公分及30公分二種,於莢果生育期間分六次取樣調查,以探討不同收穫期對落花生莢果成熟度之影響,期瞭解臺灣目前落花生主要栽培品種之最適收穫期,以提供落花生栽培及育種改進之參考。試驗結果,四個基因型均以愈接近地面之分枝所結莢果愈多,尤以第一、二分枝莢數最多,上位分枝結莢之機率以立枝仔及VB313較高,所結莢果上位分枝不一定較下位分枝晚熟。單株莢果及籽粒數,以株距30公分之栽培情況下較多於10公分者。四個基因型落花生,不管春秋作,六次收穫期中,成熟莢數(合格莢)均不易達70%以上。依成熟莢果百分比觀之,臺南11號及臺農6號春作最適收穫期約為始花後108-115天,秋作為90-97天;立枝仔及VB313春作最適收穫期為始花後115天,秋作為97天。 To study the effects of harvest date on pod maturity of peanut, two Spanish type (TN 11 and TNG 6) and two Virginia type (Li-chu-tzae and VB313) peanut genotypes were grown with two space-in-rows in the field of the Taiwan Agricultural Research Institute in the spring and fall crop seasons of 1995. The first and second branches of peanuts set more pods than any of other branches. More pods set at the upper branches of Virginia type than those of Spanish type. Due to growth habits, some upper pods might have earlier maturity than that of lower pods. Peanuts grown in 30 cm of space-in-row had more pods per plant than those in 10 cm of space-in-row. The ratio of maturing pods were usually less than 70% in these four genotypes grown in both spring and fall crop seasons. For the Spanish type peanuts, 108-115 days after first blooming stage in spring or 90-97 days after first blooming stage in fall is the most appropriate harvest date. As for the Virginia type peanuts, the most appropriate harvest date is about 115 days and 97 days after first blooming stage in spring and fall, respectively
    corecore