916 research outputs found

    Carcinoma-associated fibroblasts stimulate tumor progression of initiated human epithelium

    Get PDF
    The present study demonstrates that fibroblasts associated with carcinomas stimulate tumor progression of initiated nontumorigenic epithelial cells both in an in vivo tissue recombination system and in an in vitro coculture system. Human prostatic carcinoma-associated fibroblasts grown with initiated human prostatic epithelial cells dramatically stimulated growth and altered histology of the epithelial population. This effect was not detected when normal prostatic fibroblasts were grown with the initiated epithelial cells under the same experimental conditions. In contrast, carcinoma-associated fibroblasts did not affect growth of normal human prostatic epithelial cells under identical conditions. From these data, we conclude that in this human prostate cancer model, carcinoma-associated fibroblasts stimulate progression of tumorigenesis. Thus, carcinoma-associated fibroblasts can direct tumor progression of an initiated prostate epithelial cell

    Simulating Properties of In Vitro Epithelial Cell Morphogenesis

    Get PDF
    How do individual epithelial cells (ECs) organize into multicellular structures? ECs are studied in vitro to help answer that question. Characteristic growth features include stable cyst formation in embedded culture, inverted cyst formation in suspension culture, and lumen formation in overlay culture. Formation of these characteristic structures is believed to be a consequence of an intrinsic program of differentiation and de-differentiation. To help discover how such a program may function, we developed an in silico analogue in which space, events, and time are discretized. Software agents and objects represent cells and components of the environment. “Cells” act independently. The “program” governing their behavior is embedded within each in the form of axioms and an inflexible decisional process. Relationships between the axioms and recognized cell functions are specified. Interactions between “cells” and environment components during simulation give rise to a complex in silico phenotype characterized by context-dependent structures that mimic counterparts observed in four different in vitro culture conditions: a targeted set of in vitro phenotypic attributes was matched by in silico attributes. However, for a particular growth condition, the analogue failed to exhibit behaviors characteristic of functionally polarized ECs. We solved this problem by following an iterative refinement method that improved the first analogue and led to a second: it exhibited characteristic differentiation and growth properties in all simulated growth conditions. It is the first model to simultaneously provide a representation of nonpolarized and structurally polarized cell types, and a mechanism for their interconversion. The second analogue also uses an inflexible axiomatic program. When specific axioms are relaxed, growths strikingly characteristic of cancerous and precancerous lesions are observed. In one case, the simulated cause is aberrant matrix production. Analogue design facilitates gaining deeper insight into such phenomena by making it easy to replace low-resolution components with increasingly detailed and realistic components

    Differential disruption of genomic integrity and cell cycle regulation in normal human fibroblasts by the HPV oncoproteins.

    Get PDF
    Genomic integrity is maintained by a network of cellular activities that assess the status of the genome at a given point in time, provide signals to proceed with or halt cell cycle progression, and provide for repair of damaged DNA. Mutations in any part of these pathways can have the ultimate effect of disturbing chromosomal integrity. Recent work suggests that p53 performs this integrator function in mammalian cells. Our present study demonstrates that in mortal cells, the expression of E6 and E7 viral oncoproteins of type 16 human papillomavirus each disrupts the integration of these signals by diverged pathways. Cells expressing E6 protein, which binds and degrades the p53 protein, exhibited alterations in cell cycle control when placed in drug and displayed the ability to amplify the CAD gene. The expression of E7, which binds different cellular proteins important for transformation, including Rb, led to a p53-independent alteration in cell cycle control, a widespread cytocidal response, and polyploidy as a mechanism of drug resistance. These results demonstrate that diverse perturbations of molecular pathways can have different effects on chromosomal integrity

    Abrogated Response to Cellular Stress Identifies DCIS Associated with Subsequent Tumor Events and Defines Basal-like Breast Tumors

    Get PDF
    SummaryApproximately 15%–30% of women diagnosed with ductal carcinoma in situ (DCIS) develop a subsequent tumor event within 10 years after surgical lumpectomy. To date, little is known about the molecular pathways that confer this differential risk for developing subsequent disease. In this study, we demonstrate that expression of biomarkers indicative of an abrogated response to cellular stress predicts DCIS with worse outcome and is a defining characteristic of basal-like invasive tumors. Mechanistic studies identify the Rb pathway as a key regulator of this response. Conversely, biomarkers indicative of an intact response to cellular stress are strongly associated with a disease-free prognosis. Assessment of these biomarkers in DCIS begins to allow prediction of tumor formation years before it actually occurs

    Changes in epithelial proportions and transcriptional state underlie major premenopausal breast cancer risks

    Get PDF
    The human breast undergoes lifelong remodeling in response to estrogen and progesterone, but hormone exposure also increases breast cancer risk. Here, we use single-cell analysis to identify distinct mechanisms through which breast composition and cell state affect hormone signaling. We show that prior pregnancy reduces the transcriptional response of hormone-responsive (HR+) epithelial cells, whereas high body mass index (BMI) reduces overall HR+ cell proportions. These distinct changes both impact neighboring cells by effectively reducing the magnitude of paracrine signals originating from HR+ cells. Because pregnancy and high BMI are known to protect against hormone-dependent breast cancer in premenopausal women, our findings directly link breast cancer risk with person-to-person heterogeneity in hormone responsiveness. More broadly, our findings illustrate how cell proportions and cell state can collectively impact cell communities through the action of cell-to-cell signaling networks

    Regulatory network decoded from epigenomes of surface ectoderm-derived cell types

    Get PDF
    Developmental history shapes the epigenome and biological function of differentiated cells. Epigenomic patterns have been broadly attributed to the three embryonic germ layers. Here we investigate how developmental origin influences epigenomes. We compare key epigenomes of cell types derived from surface ectoderm (SE), including keratinocytes and breast luminal and myoepithelial cells, against neural crest-derived melanocytes and mesoderm-derived dermal fibroblasts to identify SE differentially methylated regions (SE-DMRs). DNA methylomes of neonatal keratinocytes share many more DMRs with adult breast luminal and myoepithelial cells than with melanocytes and fibroblasts from the same neonatal skin. This suggests that SE origin contributes to DNA methylation patterning, while shared skin tissue environment has limited effect on epidermal keratinocytes. Hypomethylated SE-DMRs are in proximity to genes with SE relevant functions. They are also enriched for enhancer- and promoter-associated histone modifications in SE-derived cells, and for binding motifs of transcription factors important in keratinocyte and mammary gland biology. Thus, epigenomic analysis of cell types with common developmental origin reveals an epigenetic signature that underlies a shared gene regulatory network

    Intrachromosomal recombination mediated by the polyomavirus large T antigen

    Get PDF
    AbstractWe used a spleen necrosis virus-based retroviral vector to introduce the polyomavirus replication origin into rat cells and developed a system to analyze homologous recombination events that do not reconstitute a selectable marker. Introduction of the gene coding for the polyomavirus large T antigen into the cell lines by DNA transfection promoted high-frequency recombination between the two retroviral LTRs, leading to amplification and excision of DNA sequences. To analyze homology requirements, we constructed cell lines carrying only the replication origin without exogenous repeats. Most of the cell lines sustained high-frequency recombination, presumably by undergoing homologous recombination between repetitive DNA lying in the vicinity of the integrated origin. Our results indicate that homologous recombination promoted by large T antigen does not require recombination hot spots in the viral genome other than the replication origin and they explain the cytotoxicity observed in some cell types when large T antigen is expressed in the presence of a functional origin
    • 

    corecore