2,046 research outputs found

    Filling Gaps in Signaling to Actin Cytoskeletal Remodeling

    Get PDF
    AbstractA recent publication in the April 4 issue of Cell advances our understanding of stimulus response coupling leading to actin remodeling. It describes the identification of a novel membrane component Mig-2 that engages filamin A through a new intermediary, migfilin, to stimulate actin assembly and cell spreading on a substrate of extracellular matrix

    Nonlinear elasticity of stiff biopolymers connected by flexible linkers

    Get PDF
    Networks of the biopolymer actin, cross-linked by the compliant protein filamin, form soft gels. They can, however, withstand large shear stresses due to their pronounced nonlinear elastic behavior. The nonlinear elasticity can be controlled by varying the number of cross-links per actin filament. We propose and test a model of rigid filaments decorated by multiple flexible linkers that is in quantitative agreement with experiment. This allows us to estimate loads on individual cross-links, which we find to be less than 10 pN. © 2009 The American Physical Society

    On the form of growing strings

    Full text link
    Patterns and forms adopted by Nature, such as the shape of living cells, the geometry of shells and the branched structure of plants, are often the result of simple dynamical paradigms. Here we show that a growing self-interacting string attached to a tracking origin, modeled to resemble nascent polypeptides in vivo, develops helical structures which are more pronounced at the growing end. We also show that the dynamic growth ensemble shares several features of an equilibrium ensemble in which the growing end of the polymer is under an effective stretching force. A statistical analysis of native states of proteins shows that the signature of this non-equilibrium phenomenon has been fixed by evolution at the C-terminus, the growing end of a nascent protein. These findings suggest that a generic non-equilibrium growth process might have provided an additional evolutionary advantage for nascent proteins by favoring the preferential selection of helical structures.Comment: 4 pages, 3 figures. Accepted for publication in Phys. Rev. Let

    Decreased levels of the gelsolin plasma isoform in patients with rheumatoid arthritis

    Get PDF
    Introduction Gelsolin is an intracellular actin-binding protein involved in cell shape changes, cell motility, and apoptosis. An extracellular gelsolin isoform, plasma gelsolin circulates in the blood of healthy individuals at a concentration of 200±50200 \pm 50 mg/L and has been suggested to be a key component of an extracellular actin-scavenging system during tissue damage. Levels of plasma gelsolin decrease during acute injury and inflammation, and administration of recombinant plasma gelsolin to animals improves outcomes following sepsis or burn injuries. In the present study, we investigated plasma gelsolin in patients with rheumatoid arthritis.Methods Circulating and intra-articular levels of plasma gelsolin were measured in 78 patients with rheumatoid arthritis using a functional (pyrene-actin nucleation) assay and compared with 62 age- and gender-matched healthy controls.Results Circulating plasma gelsolin levels were significantly lower in patients with rheumatoid arthritis compared with healthy controls (141±32141 \pm 32 versus 196±40196 \pm 40 mg/L, P = 0.0002). The patients' intra-articular plasma gelsolin levels were significantly lower than in the paired plasma samples (94±2494 \pm 24 versus 141±32141 \pm 32 mg/L, P = 0.0001). Actin was detected in the synovial fluids of all but four of the patients, and immunoprecipitation experiments identified gelsolin-actin complexes.Conclusions The plasma isoform of gelsolin is decreased in the plasma of patients with rheumatoid arthritis compared with healthy controls. The reduced plasma concentrations in combination with the presence of actin and gelsolin-actin complexes in synovial fluids suggest a local consumption of this potentially anti-inflammatory protein in the inflamed joint

    Dynamic Phase Transitions in Cell Spreading

    Full text link
    We monitored isotropic spreading of mouse embryonic fibroblasts on fibronectin-coated substrates. Cell adhesion area versus time was measured via total internal reflection fluorescence microscopy. Spreading proceeds in well-defined phases. We found a power-law area growth with distinct exponents a_i in three sequential phases, which we denote basal (a_1=0.4+-0.2), continous (a_2=1.6+-0.9) and contractile (a_3=0.3+-0.2) spreading. High resolution differential interference contrast microscopy was used to characterize local membrane dynamics at the spreading front. Fourier power spectra of membrane velocity reveal the sudden development of periodic membrane retractions at the transition from continous to contractile spreading. We propose that the classification of cell spreading into phases with distinct functional characteristics and protein activity patterns serves as a paradigm for a general program of a phase classification of cellular phenotype. Biological variability is drastically reduced when only the corresponding phases are used for comparison across species/different cell lines.Comment: 4 pages, 5 figure
    • …
    corecore