212,585 research outputs found

    Resonant Fully dielectric metasurfaces for ultrafast Terahertz pulse generation

    No full text
    Metasurfaces represent a new frontier in materials science paving for unprecedented methods of controlling electromagnetic waves, with a range of applications spanning from sensing to imaging and communications. For pulsed terahertz generation, metasurfaces offer a gateway to tuneable thin emitters that can be utilised for large-area imaging, microscopy and spectroscopy. In literature THz-emitting metasurfaces generally exhibit high absorption, being based either on metals or on semiconductors excited in highly resonant regimes. Here we propose the use of a fully dielectric semiconductor exploiting morphology-mediated resonances and inherent quadratic nonlinear response. Our system exhibits a remarkable 40-fold efficiency enhancement compared to the unpatterned at the peak of the optimised wavelength range, demonstrating its potential as scalable emitter design

    Terahertz spatiotemporal wave synthesis in random systems

    No full text
    Complex media have emerged as a powerful and robust framework to control light–matter interactions designed for task-specific optical functionalities. Studies on wavefront shaping through disordered systems have demonstrated optical wave manipulation capabilities beyond conventional optics, including aberration-free and subwavelength focusing. However, achieving arbitrary and simultaneous control over the spatial and temporal features of light remains challenging. In particular, no practical solution exists for field-level arbitrary spatiotemporal control of wave packets. A new paradigm shift has emerged in the terahertz frequency domain, offering methods for absolute time-domain measurements of the scattered electric field, enabling direct field-based wave synthesis. In this work, we report the experimental demonstration of field-level control of single-cycle terahertz pulses on arbitrary spatial points through complex disordered media.</p

    Search for vector-boson resonances decaying into a top quark and a bottom quark using pp collisions at s = 13 TeV with the ATLAS detector