952 research outputs found

    Meta-Analysis in Genome-Wide Association Datasets: Strategies and Application in Parkinson Disease

    Get PDF
    BACKGROUND: Genome-wide association studies hold substantial promise for identifying common genetic variants that regulate susceptibility to complex diseases. However, for the detection of small genetic effects, single studies may be underpowered. Power may be improved by combining genome-wide datasets with meta-analytic techniques. METHODOLOGY/PRINCIPAL FINDINGS: Both single and two-stage genome-wide data may be combined and there are several possible strategies. In the two-stage framework, we considered the options of (1) enhancement of replication data and (2) enhancement of first-stage data, and then, we also considered (3) joint meta-analyses including all first-stage and second-stage data. These strategies were examined empirically using data from two genome-wide association studies (three datasets) on Parkinson disease. In the three strategies, we derived 12, 5, and 49 single nucleotide polymorphisms that show significant associations at conventional levels of statistical significance. None of these remained significant after conservative adjustment for the number of performed analyses in each strategy. However, some may warrant further consideration: 6 SNPs were identified with at least 2 of the 3 strategies and 3 SNPs [rs1000291 on chromosome 3, rs2241743 on chromosome 4 and rs3018626 on chromosome 11] were identified with all 3 strategies and had no or minimal between-dataset heterogeneity (I(2)ā€Š=ā€Š0, 0 and 15%, respectively). Analyses were primarily limited by the suboptimal overlap of tested polymorphisms across different datasets (e.g., only 31,192 shared polymorphisms between the two tier 1 datasets). CONCLUSIONS/SIGNIFICANCE: Meta-analysis may be used to improve the power and examine the between-dataset heterogeneity of genome-wide association studies. Prospective designs may be most efficient, if they try to maximize the overlap of genotyping platforms and anticipate the combination of data across many genome-wide association studies

    Chinese scientists and US leadership in the life sciences

    Get PDF
    To the Editor ā€” We, the undersigned, are leaders in US academic and industrial biomedical research and drug development. We are concerned that recent actions by government agencies and universities with respect to Chinese scientists in the United States could threaten US leadership in biomedical science

    N-acetyltransferase 2 (NAT2) gene polymorphisms in Parkinson's disease

    Get PDF
    BACKGROUND: Parkinson's disease (PD) is a movement disorder caused by the degeneration of dopaminergic neurons in the substantia nigra of the midbrain. The molecular basis of this neural death is unknown, but genetic predisposition and environmental factors may cause the disease. Sequence variations in N-acetyltransferase 2 (NAT2) gene leading to slow acetylation process have been associated with PD, but results are contradictory. METHODS: We analyzed three NAT2 genetic variations, c.481C>T, c.590G>A (p.R197Q) and c.857G>A (p.G286E), which are known to result in a slow acetylator phenotype. Using validated PCR-RFLP assays, we genotyped 243 healthy unrelated Caucasian control subjects and 124 PD patients for these genetic variations. Further, we have undertaken a systematic review of NAT2 studies on PD and we incorporated our results in a meta-analysis consisting of 10 studies, 1,206 PD patients and 1,619 control subjects. RESULTS: Overall, we did not find significant differences in polymorphic acetylation genotypes in PD and control subjects. In the meta-analysis of slow acetylators from 10 studies and representing 604/1206 PD vs. 732/1619 control subjects, a marginally significant odds ratio (OR) of 1.32 (95% CI 1.12ā€“1.54, p < 0.05) was obtained. Re-analysis of the data to exclude the only two studies showing positive association of slow acetylators to PD, resulted in a non-significant OR (1.07, 95% CI 0.9ā€“1.28). Furthermore, meta-analysis of studies for c.590G>A, where both allele and genotype frequencies in PD vs. control subjects were analyzed, did not give significant summary odds ratios as well. CONCLUSION: We found little evidence for differences in polymorphic acetylation genotypes in PD and control subjects. Results of the meta-analyses did not also provide conclusive evidence for an overall association of NAT2 slow acetylator genotypes to PD

    A status report on RNAi therapeutics

    Get PDF
    Fire and Mello initiated the current explosion of interest in RNA interference (RNAi) biology with their seminal work in Caenorhabditis elegans. These observations were closely followed by the demonstration of RNAi in Drosophila melanogaster. However, the full potential of these new discoveries only became clear when Tuschl and colleagues showed that 21-22 bp RNA duplexes with 3" overhangs, termed small interfering (si)RNAs, could reliably execute RNAi in a range of mammalian cells. Soon afterwards, it became clear that many different human cell types had endogenous machinery, the RNA-induced silencing complex (RISC), which could be harnessed to silence any gene in the genome. Beyond the availability of a novel way to dissect biology, an important target validation tool was now available. More importantly, two key properties of the RNAi pathway - sequence-mediated specificity and potency - suggested that RNAi might be the most important pharmacological advance since the advent of protein therapeutics. The implications were profound. One could now envisage selecting disease-associated targets at will and expect to suppress proteins that had remained intractable to inhibition by conventional methods, such as small molecules. This review attempts to summarize the current understanding on siRNA lead discovery, the delivery of RNAi therapeutics, typical in vivo pharmacological profiles, preclinical safety evaluation and an overview of the 14 programs that have already entered clinical practice

    Case ascertainment uncertainties in prevalence surveys of Parkinson's disease

    Get PDF
    Using unpublished data from five completed prevalence surveys of Parkinson's disease (PD), we investigated case ascertainment uncertainties that potentially have a direct effect on prevalence. These uncertainties arise from the choice of diagnostic criteria, the choice of screening method, and the amount of information lost because of nonresponse. The surveys were conducted in Argentina, India, China, Italy, and the Netherlands. Our analyses consisted of simple comparisons of prevalence results, positive predictive values (a screening measure), and nonresponse percentages. We found that (a) prevalence comparisons between surveys have diminished value if the surveys used different diagnostic criteria for PD; (b) screening performance may be affected adversely if symptom questions are answered by one family member for the entire family living together rather than by each family member individually; and (c) nonresponse from refusal or unavailability does not necessarily lead to bias, but special caution may be appropriate with prevalence results pertaining to elderly women

    Backbone and side-chain 1H, 15N and 13C resonance assignments of S18Y mutant of ubiquitin carboxy-terminal hydrolase L1

    Get PDF
    Ubiquitin carboxy-terminal hydrolase L1 (UCH-L1), also known as PGP9.5, is a protein of 223 amino acids. Although it was originally characterized as a deubiquitinating enzyme, recent studies indicate that it also functions as a ubiquitin (Ub) ligase and a mono-Ub stabilizer. It is highly abundant in brain, constituting up to 2% of total brain proteins. Down-regulation and extensive oxidative modification of UCH-L1 have been observed in the brains of Alzheimerā€™s disease (AD) and Parkinsonā€™s disease (PD) patients. Mutations in the UCH-L1 gene have been reported to be linked to Parkinsonā€™s disease, in particular, the I93Ā M variant is associated with a higher susceptibility of PD in contrast to a higher protection against PD for the S18Y variant. Hence, the structure of UCH-L1 and the underlying effects of disease associated mutations on the structure and function of UCH-L1 are of considerable interest. Here, we report the NMR spectral assignments of the S18Y human UCH-L1 mutant with the aim to obtain better understanding about the risk of Parkinsonā€™s disease against structural and dynamical changes induced by this mutation on UCH-L1

    Does Ī±-synuclein have a dual and opposing effect in preclinical vs. clinical Parkinson's disease?

    Get PDF
    AbstractĪ±-Synuclein gene (SNCA) multiplications cause familial parkinsonism and allele-length polymorphisms within the SNCA dinucleotide repeat REP1 increase the risk for developing Parkinson's disease (PD). Since SNCA multiplications increase SNCA expression, and REP1 genotypes that increase the risk of developing PD show increased SNCA expression in cell-culture systems, animal models, and human blood and brain, PD therapies seek to reduce SNCA expression. We conducted an observational study of 1098 PD cases to test the hypothesis that REP1 genotypes correlated with reduced SNCA expression are associated with better motor and cognitive outcomes. We evaluated the association of REP1 genotypes with survival free of Hoehn and Yahr stages 4 or 5 (motor outcome) and of Modified Telephone Interview for Cognitive Status score ā‰¤27 or Alzheimer's Disease Dementia Screening Interview score ā‰„2 (cognitive outcome). Median disease duration at baseline was 3.3 years and median lag time from baseline to follow-up was 7.8 years. Paradoxically, REP1 genotypes associated with increased risk of developing PD and increased SNCA expression were associated with better motor (HRĀ =Ā 0.87, pĀ =Ā 0.046, covariate-adjusted age-scale analysis; HRĀ =Ā 0.85, pĀ =Ā 0.020, covariate-adjusted time-scale analysis) and cognitive outcomes (HRĀ =Ā 0.90, pĀ =Ā 0.12, covariate-adjusted age-scale analysis; HRĀ =Ā 0.85, pĀ =Ā 0.023, covariate-adjusted time-scale analysis). Our findings raise the possibility that SNCA has a dual, opposing, and time-dependent role. This may have implications for the development of therapies that target SNCA expression

    A Genomic Pathway Approach to a Complex Disease: Axon Guidance and Parkinson Disease

    Get PDF
    While major inroads have been made in identifying the genetic causes of rare Mendelian disorders, little progress has been made in the discovery of common gene variations that predispose to complex diseases. The single gene variants that have been shown to associate reproducibly with complex diseases typically have small effect sizes or attributable risks. However, the joint actions of common gene variants within pathways may play a major role in predisposing to complex diseases (the paradigm of complex genetics). The goal of this study was to determine whether polymorphism in a candidate pathway (axon guidance) predisposed to a complex disease (Parkinson disease [PD]). We mined a whole-genome association dataset and identified single nucleotide polymorphisms (SNPs) that were within axon-guidance pathway genes. We then constructed models of axon-guidance pathway SNPs that predicted three outcomes: PD susceptibility (odds ratio = 90.8, p = 4.64 Ɨ 10āˆ’38), survival free of PD (hazards ratio = 19.0, p = 5.43 Ɨ 10āˆ’48), and PD age at onset (R2 = 0.68, p = 1.68 Ɨ 10āˆ’51). By contrast, models constructed from thousands of random selections of genomic SNPs predicted the three PD outcomes poorly. Mining of a second whole-genome association dataset and mining of an expression profiling dataset also supported a role for many axon-guidance pathway genes in PD. These findings could have important implications regarding the pathogenesis of PD. This genomic pathway approach may also offer insights into other complex diseases such as Alzheimer disease, diabetes mellitus, nicotine and alcohol dependence, and several cancers

    Hirulog-1 and -B2 thrombin specificity

    Full text link

    In vivo silencing of alpha-synuclein using naked siRNA

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Overexpression of Ī±-synuclein (SNCA) in families with multiplication mutations causes parkinsonism and subsequent dementia, characterized by diffuse Lewy Body disease <it>post-mortem</it>. Genetic variability in <it>SNCA </it>contributes to risk of idiopathic Parkinson's disease (PD), possibly as a result of overexpression. <it>SNCA </it>downregulation is therefore a valid therapeutic target for PD.</p> <p>Results</p> <p>We have identified human and murine-specific siRNA molecules which reduce <it>SNCA in vitro</it>. As a proof of concept, we demonstrate that direct infusion of chemically modified (naked), murine-specific siRNA into the hippocampus significantly reduces <it>SNCA </it>levels. Reduction of <it>SNCA </it>in the hippocampus and cortex persists for a minimum of 1 week post-infusion with recovery nearing control levels by 3 weeks post-infusion.</p> <p>Conclusion</p> <p>We have developed naked gene-specific siRNAs that silence expression of <it>SNCA in vivo</it>. This approach may prove beneficial toward our understanding of the endogenous functional equilibrium of <it>SNCA</it>, its role in disease, and eventually as a therapeutic strategy for Ī±-synucleinopathies resulting from <it>SNCA </it>overexpression.</p
    • ā€¦
    corecore