740 research outputs found

    Kinematic Segregation of Flowing Grains in Sandpiles

    Full text link
    We study the segregation of granular mixtures in two-dimensional silos using a set of coupled equations for surface flows of grains. We study the thick flow regime, where the grains are segregated in the rolling phase. We incorporate this dynamical segregation process, called kinematic sieving, free-surface segregation or percolation, into the theoretical formalism and calculate the profiles of the rolling species and the concentration of grains in the bulk in the steady state. Our solution shows the segregation of the mixture with the large grains being found at the bottom of the pile in qualitative agreement with experiments.Comment: 6 pages, 3 figures, http://polymer.bu.edu/~hmakse/Home.htm

    Invited review: Effect of temperature on a granular pile

    Full text link
    As a fragile construction, a granular pile is very sensitive to minute external perturbations. In particular, it is now well established that a granular assembly is sensitive to variations of temperature. Such variations can produce localized rearrangements as well as global static avalanches inside a pile. In this review, we sum up the various observations that have been made concerning the effect of temperature on a granular assembly. In particular, we dwell on the way controlled variations of temperature have been employed to generate the compaction of a granular pile. After laying emphasis on the key features of this compaction process, we compare it to the classic vibration-induced compaction. Finally, we also review other granular systems in a large sense, from microscopic (jammed multilamellar vesicles) to macroscopic scales (stone heave phenomenon linked to freezing and thawing of soils) for which periodic variations of temperature could play a key role in the dynamics at stake.Comment: 16 pages, 14 figures, Commentary from the reviewer available in Papers in Physic

    Calculation of the Voronoi boundary for lens-shaped particles and spherocylinders

    Get PDF
    We have recently developed a mean-field theory to estimate the packing fraction of non-spherical particles [A. Baule et al., Nature Commun. (2013)]. The central quantity in this framework is the Voronoi excluded volume, which generalizes the standard hard-core excluded volume appearing in Onsager's theory. The Voronoi excluded volume is defined from an exclusion condition for the Voronoi boundary between two particles, which is usually not tractable analytically. Here, we show how the technical difficulties in calculating the Voronoi boundary can be overcome for lens-shaped particles and spherocylinders, two standard prolate and oblate shapes with rotational symmetry. By decomposing these shapes into unions and intersections of spheres analytical expressions can be obtained.Comment: 19 pages, 8 figure

    Finding influential spreaders from human activity beyond network location

    Full text link
    Most centralities proposed for identifying influential spreaders on social networks to either spread a message or to stop an epidemic require the full topological information of the network on which spreading occurs. In practice, however, collecting all connections between agents in social networks can be hardly achieved. As a result, such metrics could be difficult to apply to real social networks. Consequently, a new approach for identifying influential people without the explicit network information is demanded in order to provide an efficient immunization or spreading strategy, in a practical sense. In this study, we seek a possible way for finding influential spreaders by using the social mechanisms of how social connections are formed in real networks. We find that a reliable immunization scheme can be achieved by asking people how they interact with each other. From these surveys we find that the probabilistic tendency to connect to a hub has the strongest predictive power for influential spreaders among tested social mechanisms. Our observation also suggests that people who connect different communities is more likely to be an influential spreader when a network has a strong modular structure. Our finding implies that not only the effect of network location but also the behavior of individuals is important to design optimal immunization or spreading schemes

    Model of random packings of different size balls

    Full text link
    We develop a model to describe the properties of random assemblies of polydisperse hard spheres. We show that the key features to describe the system are (i) the dependence between the free volume of a sphere and the various coordination numbers between the species, and (ii) the dependence of the coordination numbers with the concentration of species; quantities that are calculated analytically. The model predicts the density of random close packing and random loose packing of polydisperse systems for a given distribution of ball size and describes packings for any interparticle friction coefficient. The formalism allows to determine the optimal packing over different distributions and may help to treat packing problems of non-spherical particles which are notoriously difficult to solve.Comment: 6 pages, 6 figure
    • …
    corecore