1,229 research outputs found

    High resolution

    No full text
    Neutron capture cross section measurements of isotopes close to s-process branching-points are of fundamental importance for the understanding of this nucleosynthesis mechanism through which about 50% of the elements heavier than iron are produced. We present in this contribution the results corresponding to the high resolution measurement, for first time ever, of the 80Se(n, Îł) cross section, in which 98 resonances never measured before have been reported. As a consequence, ten times more precise values for the MACS have been obtained compared to previous accepted value adopted in the astrophysical KADoNiS data base

    Naturally occurring canine laminopathy leading to a dilated and fibrosing cardiomyopathy in the Nova Scotia Duck Tolling Retriever

    Get PDF
    Abstract Dilated cardiomyopathy (DCM) is characterized by decreased systolic function and dilation of one or both ventricles, often leading to heart failure or sudden death. Two 10-month-old sibling Nova Scotia Duck Tolling Retrievers (NSDTR) died acutely with evidence of dilated cardiomyopathy with myocardial fibrosis. Association analysis using two cases and 35 controls identified three candidate regions homozygous in the two cases. Whole genome sequencing identified a frameshift deletion in the LMNA gene (NC_049228.1:g.41688530del, NP_001274080:p.(Asp576ThrfsTer124)). Three retrospectively identified NSDTRs with sudden death before 2 years of age and severe myocardial fibrosis were also homozygous for the deletion. One 5 year old with sudden death and myocardial fibrosis was heterozygous for the deletion. This variant was not identified in 722 dogs of other breeds, nor was it identified to be homozygous in 784 NSDTR. LMNA codes for lamin A/C proteins, which are type V intermediate filaments that provide structural support to the nuclear membrane. In humans, LMNA variants can cause DCM with sudden death as well as diseases of striated muscles, lipodystrophy, neuropathies, and accelerated aging disorders. This frameshift deletion is predicted to affect processing of prelamin A into lamin A. Pedigree analysis in the NSDTR and functional evaluation of heterozygotes is consistent with a predominantly recessive mode of inheritance and possibly low penetrance in heterozygotes in contrast to people, where most pathogenic LMNA variants are dominantly inherited

    Measurement of the 77Se(n,Îł)^{77}Se ( n , Îł ) cross section up to 200 keV at the n_TOF facility at CERN

    Get PDF
    The 77Se(n,γ)^{77}Se ( n , γ ) reaction is of importance for 77Se^{77}Se abundance during the slow neutron capture process in massive stars. We have performed a new measurement of the 77Se^{77}Se radiative neutron capture cross section at the Neutron Time-of-Flight facility at CERN. Resonance capture kernels were derived up to 51 keV and cross sections up to 200 keV. Maxwellian-averaged cross sections were calculated for stellar temperatures between kT=5 keVkT=5 \space keV and kT=100 keVkT=100\space keV, with uncertainties between 4.2% and 5.7%. Our results lead to substantial decreases of 14% and 19% in 77Se^{77}Se abundances produced through the slow neutron capture process in selected stellar models of 15M⊙15M⊙ and 2M⊙2M⊙, respectively, compared to using previous recommendation of the cross section

    Measurement of the

    No full text
    The neutron capture cross section of 241Am is an important quantity for nuclear energy production and fuel cycle scenarios. Several measurements have been performed in recent years with the aim to reduce existing uncertainties in evaluated data. Two previous measurements, performed at the 185 m flight-path station EAR1 of the neutron time-of-flight facility n_TOF at CERN, have permitted to substantially extend the resolved resonance region, but suffered in the near-thermal energy range from the unfavorable signal-to-background ratio resulting from the combination of the high radioactivity of 241Am and the rather low thermal neutron flux. The here presented 241Am(n,Îł) measurement, performed with C6D6 liquid scintillator gamma detectors at the 20 m flight-path station EAR2 of the n_TOF facility, took advantage of the much higher neutron flux. The current status of the analysis of the data, focussed on the low-energy region, will be described here

    Measurement of the <math><mrow><mmultiscripts><mi>Se</mi><mprescripts/><none/><mn>77</mn></mmultiscripts><mo>(</mo><mi>n</mi><mo>,</mo><mi>γ</mi><mo>)</mo></mrow></math> cross section up to 200 keV at the n_TOF facility at CERN

    Get PDF
    International audienceThe Se77(n,γ) reaction is of importance for Se77 abundance during the slow neutron capture process in massive stars. We have performed a new measurement of the Se77 radiative neutron capture cross section at the Neutron Time-of-Flight facility at CERN. Resonance capture kernels were derived up to 51 keV and cross sections up to 200 keV. Maxwellian-averaged cross sections were calculated for stellar temperatures between kT=5keV and kT=100keV, with uncertainties between 4.2% and 5.7%. Our results lead to substantial decreases of 14% and 19% in Se77 abundances produced through the slow neutron capture process in selected stellar models of 15M⊙ and 2M⊙, respectively, compared to using previous recommendation of the cross section

    Mu2e Run I Sensitivity Projections for the Neutrinoless mu(-) -> e(-) Conversion Search in Aluminum

    No full text
    The Mu2e experiment at Fermilab will search for the neutrinoless Ό−→e− conversion in the field of an aluminum nucleus. The Mu2e data-taking plan assumes two running periods, Run I and Run II, separated by an approximately two-year-long shutdown. This paper presents an estimate of the expected Mu2e Run I search sensitivity and includes a detailed discussion of the background sources, uncertainties of their prediction, analysis procedures, and the optimization of the experimental sensitivity. The expected Run I 5σ discovery sensitivity is RÎŒe=1.2×10−15, with a total expected background of 0.11±0.03 events. In the absence of a signal, the expected upper limit is RÎŒe&lt;6.2×10−16 at 90% CL. This represents a three order of magnitude improvement over the current experimental limit of RÎŒe&lt;7×10−13 at 90% CL set by the SINDRUM II experiment.</jats:p

    Identification of novel genetic risk factors of dilated cardiomyopathy: from canine to human

    Get PDF
    BACKGROUND: Dilated cardiomyopathy (DCM) is a life-threatening heart disease and a common cause of heart failure due to systolic dysfunction and subsequent left or biventricular dilatation. A significant number of cases have a genetic etiology; however, as a complex disease, the exact genetic risk factors are largely unknown, and many patients remain without a molecular diagnosis. METHODS: We performed GWAS followed by whole-genome, transcriptome, and immunohistochemical analyses in a spontaneously occurring canine model of DCM. Canine gene discovery was followed up in three human DCM cohorts. RESULTS: Our results revealed two independent additive loci associated with the typical DCM phenotype comprising left ventricular systolic dysfunction and dilatation. We highlight two novel candidate genes, RNF207 and PRKAA2, known for their involvement in cardiac action potentials, energy homeostasis, and morphology. We further illustrate the distinct genetic etiologies underlying the typical DCM phenotype and ventricular premature contractions. Finally, we followed up on the canine discoveries in human DCM patients and discovered candidate variants in our two novel genes. CONCLUSIONS: Collectively, our study yields insight into the molecular pathophysiology of DCM and provides a large animal model for preclinical studies

    Corrigendum: “Measurement of ⁷³Ge(n,Îł) cross sections and implications for stellar nucleosynthesis” [Phys. Lett. B 790 (2019) 458–465]

    Get PDF

    Measurement of the neutron-induced fission cross section of <math><mmultiscripts><mi>Th</mi><mprescripts/><none/><mn>230</mn></mmultiscripts></math> at the CERN n_TOF facility

    No full text
    International audienceThe neutron-induced fission cross section of Th230 has been measured at the neutron time-of-flight facility n_TOF located at CERN. The experiment was performed at the experimental area EAR-1 with a neutron flight path of 185 m, using Micromegas detectors for the detection of the fission fragments. The Th230(n,f) cross section was determined relative to the U235(n,f) one, covering the energy range from the fission threshold up to 400 MeV. The results from the present work are compared with existing cross-section datasets and the observed discrepancies are discussed and analyzed. Finally, using the code empire 3.2.3 a theoretical study, based on the statistical model, was performed leading to a satisfactory reproduction of the experimental results with the proper tuning of the respective parameters, while for incident neutron energy beyond 200 MeV the fission of Th230 was described by Monte Carlo simulations
    • 

    corecore