1,503 research outputs found

    Assessment of ROS Production in the Mitochondria of Live Cells

    Get PDF
    Production of reactive oxygen species (ROS) in the mitochondria plays multiple roles in physiology, and excessive production of ROS leads to the development of various pathologies. ROS in the mitochondria are generated by various enzymes, mainly in the electron transporvt chain, and it is important to identify not only the trigger but also the source of free radical production. It is important to measure mitochondrial ROS in live, intact cells, because activation of ROS production could be initiated by changes in extramitochondrial processes which could be overseen when using isolated mitochondria. Here we describe the approaches, which allow to measure production of ROS in the matrix of mitochondria in live cells. We also demonstrate how to measure kinetic changes in lipid peroxidation in mitochondria of live cells. These methods could be used for understanding the mechanisms of pathology in a variety of disease models and also for testing neuro- or cardioprotective chemicals

    Electrophilic metabolites targeting the KEAP1/NRF2 partnership

    Get PDF
    Numerous electrophilic metabolites are formed during cellular activity, particularly under conditions of oxidative, inflammatory and metabolic stress. Among them are lipid oxidation and nitration products, and compounds derived from amino acid and central carbon metabolism. Here we focus on one cellular target of electrophiles, the Kelch-like ECH associated protein 1 (KEAP1)/nuclear factor erythroid 2 p45-related factor 2 (NRF2) partnership. Many of these reactive compounds modify C151, C273 and/or C288 within KEAP1. Other types of modifications include S-lactoylation of C273, N-succinylation of K131, and formation of methylimidazole intermolecular crosslink between two KEAP1 monomers. Modified KEAP1 relays the initial signal to transcription factor NRF2 and its downstream targets, the ultimate effectors that provide means for detoxification, adaptation and survival. Thus, by non-enzymatically covalently modifying KEAP1, the electrophilic metabolites discussed here serve as chemical signals connecting metabolism with stress responses

    Keap1, the cysteine-based mammalian intracellular sensor for electrophiles and oxidants

    Get PDF
    The Kelch-like ECH associated protein 1 (Keap1) is a component of a Cullin3-based Cullin-RING E3 ubiquitin ligase (CRL) multisubunit protein complex. Within the CRL, homodimeric Keap1 functions as the Cullin3 adaptor, and importantly, it is also the critical component of the E3 ligase that performs the substrate recognition. The best-characterized substrate of Keap1 is transcription factor NF-E2 p45-related factor 2 (Nrf2), which orchestrates an elaborate transcriptional program in response to environmental challenges caused by oxidants, electrophiles and pro-inflammatory agents, allowing adaptation and survival under stress conditions. Keap1 is equipped with reactive cysteine residues that act as sensors for endogenously produced and exogenously encountered small molecules (termed inducers), which have a characteristic chemical signature, reactivity with sulfhydryl groups. Inducers modify the cysteine sensors of Keap1 and impair its ability to target Nrf2 for ubiquitination and degradation. Consequently, Nrf2 accumulates, enters the nucleus and drives the transcription of its target genes, which encode a large network of cytoprotective proteins. Here we summarize the early studies leading to the prediction of the existence of Keap1, followed by the discovery of Keap1 as the main negative regulator of Nrf2. We then describe the available structural information on Keap1, its assembly with Cullin3, and its interaction with Nrf2. We also discuss the multiple cysteine sensors of Keap1 that allow for detection of a wide range of endogenous and environmental inducers, and provide fine-tuning and tight control of the Keap1/Nrf2 stress-sensing response
    • 

    corecore