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The devastating age-dependent neurodegenerative disorders, including prevalent Alzheimer’s 

(AD) and Parkinson’s diseases (PD), as well as rare such as Huntington’s chorea (HD) and Amyotrophic 

Lateral Sclerosis (ALS), affect millions of people worldwide. Their prevalence is projected to increase 

due to ageing of the population, with a corresponding increase in the associated socioeconomic impact.  

Currently, there is no disease-modifying therapy for any neurodegenerative disease.  Symptomatic 

treatments are available for some conditions such as PD and HD, but the therapeutic benefits are transient 

and limited. Although the causative factors and clinical manifestations are distinct for each 

neurodegenerative disease, their molecular pathogeneses share common underlying factors, such as 

excessive levels of reactive oxygen species (ROS), largely due to mitochondrial impairment, 

neuroinflammation, and disturbances in protein homeostasis (proteostasis). This raises the exciting 

possibility for developing a universal treatment, targeting these common drivers of neurodegeneration.  

The transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2) orchestrates a major 
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endogenous defense mechanism against oxidative and xenobiotic stress, and inflammation, and plays a 

role in the maintenance of mitochondrial function and cellular proteostasis, suggesting potential benefits 

of therapeutic targeting of Nrf2 to counteract neurodegeneration. Under stress condition(s), Nrf2 activates 

the transcriptional upregulation of a large network of cytoprotective genes, allowing adaptation and 

survival [1].  The levels (and activity) of Nrf2 are tightly regulated through ubiquitination and 

proteasomal degradation mediated by several ubiquitin ligase systems, including Kelch-like ECH-

associated protein 1 (Keap1)-Cullin3 (Cul3)/Rbx1, β-transducin repeats-containing protein (β-TrCP)-

Cul1, and synoviolin (Hrd1) [2]. Of these, Keap1 is the best-understood key negative regulator of Nrf2.   

Keap1 serves as a sensor for electrophiles and oxidants, which chemically modify specific cysteines in 

Keap1, resulting in conformational changes that protect Nrf2 from Keap1-directed degradation. As a 

result, Nrf2 accumulates, translocates to the nucleus, binds (as a heterodimer with a small Maf 

transcription factor) to antioxidant response elements (AREs) in the promoter of its target genes, and 

activates the expression of a large network of detoxification, antioxidant, and anti-inflammatory genes as 

well as genes involved in clearance of damaged proteins [1]. Of particular interest is upregulation of 

genes responsible in biosynthesis and regeneration of glutathione (GSH), a major intracellular 

antioxidant. Nrf2 also suppresses pro-inflammatory responses, in part through transcriptional repression 

[3], and is involved in the maintenance of mitochondrial function [4]. Keap1 and autophagosome cargo 

sequestosome-1 protein (p62/SQSTM1) are Nrf2-responisve proteins and principal regulators of negative 

and positive feedback loop mechanisms respectively. Additionally, p62 targets Keap1 for selective 

degradation through autophagy [5], thus contributing to sustained Nrf2 activation response.  

Ageing is associated with increases in ROS and chronic inflammation, suggesting a loss of 

adaptability and/or impairment of Nrf2 signaling, which are particularly pronounced in age-dependent 

neurodegenerative diseases [6]. Intriguingly, rare mutations in SQSTM1 cause susceptibility to the human 

neurodegenerative condition ALS and frontotemporal lobar degeneration (FTLD), and are associated with 

muted Nrf2 activation responses in disease models [7]. Studies suggest a reciprocal relationship and show 

negative influence of mutant disease-causative proteins on Nrf2 signaling, thereby implicating inhibition 



of the Nrf2 pathway as a possible mechanism underlying severity and progression of neurodegeneration.   

ALS, an adult-onset neurodegenerative disease caused by selective death of motor neurons (MNs) in the 

brain and spinal cord, is characterized by progressive muscle weakness and atrophy and is uniformly 

fatal, usually within five years of clinical presentation [8, 9]. ALS has a predominant sporadic (sALS) 

form with no apparent genetic component, however approximately 5-10% clinical cases display an 

autosomal dominant inheritance pattern or familial form of disease (fALS) with known gene causative 

mutations. The clinical features of sALS and fALS are remarkably similar, suggesting involvement of 

common pathogenic mechanisms like oxidative stress and neuroinflammation. 

Collective work elucidated the oxidative stress and neuroinflammation as the key therapeutic 

targets of Nrf2 signaling in ALS [10]. Genetic studies in ALS mouse models have shown a significant 

therapeutic effect of elevated Nrf2 levels in astrocytes, the major GSH suppliers for neighboring neurons. 

Moreover, Nrf2 signaling is critical for attenuating neuroinflammation in ALS through repression of the 

deleterious effects of activated microglia on neuronal survival. Consistent with the therapeutic potential of 

Nrf2 signaling, treatment with small molecule activators, including the extremely potent cyanoenone 

triterpenoids, have shown efficacy in mouse ALS models [11].   

The neuroprotective potential of Nrf2 activation has been evaluated in experiments using genetic 

mouse HD models. HD is an autosomal dominant and highly penetrant neurodegenerative disorder, which 

results from the pathological expansion of a trinucleotide CAG repeats encoding polyglutamines in 

huntingtin (HTT) protein [12]. Brains from HD patients typically display marked striatal and cortical 

atrophy at the time of diagnosis. Once motor or other symptoms become apparent, typically during mid-

life, the affected individuals become increasingly disabled over the course of 15-25 years before 

succumbing to the effects of severe physical and mental deterioration.  

Complex pathogenic mechanisms have been implicated in HD, however excessive oxidative 

stress has been recognized as an important driver of pathology [13]. The harmful role of oxidative stress 

has been described in both HD patients and in experimental models, and is potentially due to inherent 

neuronal sensitivity to an excess of ROS. The levels of several Nrf2-dependent antioxidant proteins, 



including glutathione peroxidases, catalase, and SOD, are increased in human HD brains compared to 

non-disease controls, suggesting a partial activation of Nrf2 defense signaling, yet insufficient to block 

progressive neurodegeneration.  Consistent with that notion, pharmacological activation of Nrf2 induces 

broad antioxidant effects in HD mouse brain and ameliorate the neurological phenotype [10]. Elevated 

expression of several key inflammatory mediators has been observed in blood, striatum, cortex, and 

cerebellum from post-mortem patient HD tissues, yet neuroinflammation in HD appears to be less 

pronounced than in ALS or PD. 

 Similarly, the neurological phenotype of the more prevalent neurodegenerative disease, PD, can 

be ameliorated by Nrf2 activation [14]. PD is characterized by progressive loss of dopaminergic neurons 

in the substantia nigra and profound reduction of dopamine in the striatum. Currently available 

dopaminergic treatments offer partial symptomatic relief and only address the motor manifestations. 

Multiple genetic and environmental factors have been implicated in PD etiology, however, similar to 

ALS, the majority of the clinical cases are sporadic. The discovery, that the environmental neurotoxin 1-

methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) causes Parkinsonism in humans, led to the 

development of the MPTP mouse model of disease, which to date remains a highly utilized animal model 

of sporadic PD, including evaluation of drug efficacy [15]. Nrf2 activators showed neuroprotective effects 

in MPTP mice, which are associated with a reduction of oxidative damage and neuroinflammation [15]. 

The identification of causative mutations in SNCA, the gene encoding alpha-synuclein (aSyn), paved the 

way for developing genetic mouse PD models, in which daily oral delivery of the Nrf2 activator dimethyl 

fumarate (DMF) protected nigral dopaminergic neurons against α-SYN toxicity [16].  

Although oxidative stress and neuroinflammation constitute pathological hallmarks of AD, a 

therapeutic role of Nrf2 signaling has emerged more slowly, perhaps due to the complexity of disease 

pathogenesis and readouts of efficacy. Nevertheless there is a number of recent publications which 

demonstrate the efficacy of Nrf2 activators in AD mouse models [17].  

DMF, an FDA-approved drug (Tecfidera, Biogen-Idec) for the treatment of relapsing multiple 

sclerosis (MS) [18], activates Nrf2 through covalent modification of the Keap1 sensor. DMF is of 



relatively low potency and specificity, which prevents its broad repurposing for neurodegenerative 

indications. Drug-like molecules with similar mechanism of action or with ability of direct interference 

with the Keap1/Nrf2 interaction are emerging [19, 20]. Most excitingly, the available data demonstrate 

the feasibility to develop Nrf2 activators for clinical use as a unified strategy for the prevention and 

treatment of a broad range of currently incurable neurodegenerative diseases.   

In summary, although the clinical manifestations of neurodegenerative diseases are distinct, these 

disorders share similar molecular mechanisms of neurodegeneration, which could be counteracted by 

common treatment with Nrf2 activators. Moreover, targeting Nrf2 signaling may provide an exciting 

therapeutic option to ameliorate disease pathology in majority of clinical cases with unknown etiology. 

Because pharmacological Nrf2 activation targets broad mechanisms of disease, all neurodegenerative 

conditions would be eligible for therapy. Therefore a major goal is to develop non-invasive oral 

treatment(s) for outpatient settings under supervision of primary care physicians, which targets both 

sporadic and familial patients. With simple and inexpensive drug synthesis and manufacturing and a 

straightforward treatment regimen, the medical cost is expected to be low, with meaningful impact on 

disease burden and survival. It is also expected that Nrf2 activating drugs would be self-administered, 

avoiding additional clinical visits, except those incurred from a longer life expectancy. For clinicians, it 

would revolutionize the approach to therapy and provide a meaningful treatment option where few have 

ever existed and entire practices would be reworked to ensure that all patients are offered therapy 

immediately after diagnosis.  

 

References 

 

1. Hayes JD, Dinkova-Kostova AT. The Nrf2 regulatory network provides an interface between redox 

and intermediary metabolism. Trends Biochem Sci. 39(4), 199-218 (2014). 

 

2. Harder B, Jiang T, Wu T, Tao S et al. Molecular mechanisms of Nrf2 regulation and how these 



influence chemical modulation for disease intervention. Biochem Soc Trans. 43(4), 680-6 (2015). 

 

3. Kobayashi EH, Suzuki T, Funayama R, et al. Nrf2 suppresses macrophage inflammatory response by 

blocking proinflammatory cytokine transcription. Nat Commun. 23, 7-11624 (2016). 

 

4. Holmström KM, Kostov RV, Dinkova-Kostova AT. The multifaceted role of Nrf2 in mitochondrial 

function. Curr Opin Toxicol. 1, 80-91 (2016). 

 

5. Taguchi K, Fujikawa N, Komatsu M et al. Keap1 degradation by autophagy for the maintenance of 

redox homeostasis. Proc Natl Acad Sci U S A. 109(34), 13561-6 (2012). 

 

6. Corenblum MJ, Ray S, Remley QW et al. Reduced Nrf2 expression mediates the decline in neural stem 

cell function during a critical middle-age period. Aging Cell. 15(4), 725-36 (2016).  

 

7. Goode A, Rea S, Sultana M et al. ALS-FTLD associated mutations of SQSTM1 impact on Keap1-Nrf2 

signalling. Mol Cell Neurosci. 76, 52-58 (2016). 

 

8. Sreedharan J, Brown RH. Amyotrophic lateral sclerosis: Problems and prospects. Ann Neurol. 74(3), 

309-16 (2013).   

 

9. Turner MR, Bowser R, Bruijn L et al. Mechanisms, models and biomarkers in amyotrophic lateral 

sclerosis. Amyotroph Lateral Scler Frontotemporal Degener. 14 Suppl 1, 19-32 (2013).  

 

10. Johnson DA, Johnson JA. Nrf2--a therapeutic target for the treatment of neurodegenerative diseases. 

Free Radic Biol Med. 88(Pt B), 253-67 (2015). 



 

11. Kanno T1, Tanaka K, Yanagisawa Y et al. A novel small molecule, N-(4-(2-pyridyl)(1,3-thiazol-2-

yl))-2-(2,4,6-trimethylphenoxy) acetamide, selectively protects against oxidative stress-induced cell death 

by activating the Nrf2-ARE pathway: therapeutic implications for ALS. Free Radic Biol Med. 53(11), 

2028-42 (2012). 

 

12. Jimenez-Sanchez M, Licitra F, Underwood BR et al. Huntington's Disease: Mechanisms of 

Pathogenesis and Therapeutic Strategies. Cold Spring Harb Perspect Med. pii: a024240. doi: 

10.1101/cshperspect.a024240 (2016). PMID: 27940602 

 

13. Johri A, Beal MF. Mitochondrial dysfunction in neurodegenerative diseases. 

J Pharmacol Exp Ther. 342(3), 619-30 (2012).  

 

14. Jazwa A, Rojo AI, Innamorato NG, Hesse M et al. Pharmacological targeting of the transcription 

factor Nrf2 at the basal ganglia provides disease modifying therapy for experimental parkinsonism. 

Antioxid Redox Signal. 14(12), 2347-60 (2011). 

 

15. Ahuja M, Kaidery AN, Yang L et al. Distinct Nrf2 Signaling Mechanisms of Fumaric Acid Esters and 

Their Role in Neuroprotection against 1-Methyl-4-Phenyl-1,2,3,6 Tetrahydropyridine-Induced 

Experimental Parkinson's-Like Disease. J Neurosci. 36(23), 6332-51 (2016).  

 

16. Lastres-Becker I, García-Yagüe AJ, Scannevin RH, et al. Repurposing the NRF2 Activator Dimethyl 

Fumarate as Therapy Against Synucleinopathy in Parkinson's Disease. Antioxid Redox Signal. 25(2), 61-

77 (2016).  

 



17. Liu Y, Deng Y, Liu H et al. Hydrogen sulfide ameliorates learning memory impairment in APP/PS1 

transgenic mice: A novel mechanism mediated by the activation of Nrf2. Pharmacol Biochem Behav. 

150-151, 207-216 (2016). 

 

18. Fox RJ, Kita M, Cohan SL et al. BG-12 (dimethyl fumarate): a review of mechanism of action, 

efficacy, and safety. Curr Med Res Opin. 30(2), 251-62 (2014). 

 

19. Bertrand HC, Schaap M, Baird L et al. Design, Synthesis, and Evaluation of Triazole Derivatives That 

Induce Nrf2 Dependent Gene Products and Inhibit the Keap1-Nrf2 Protein-Protein Interaction. J Med 

Chem. 58(18), 7186-94 (2015).  

 

20. Quinti L, Casale M, Moniot S, et al. SIRT2- and NRF2-Targeting Thiazole-Containing Compound 

with Therapeutic Activity in Huntington's Disease Models. Cell Chem Biol. 23(7), 849-61 (2016). 

 

 
 
 
 


