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Abstract

Parkinson's disease (PD) is a progressive neurodegen-

erative disorder, for which no disease‐modifying thera-

pies are available to date. Although understanding of the

precise aetiology of PD is incomplete, it is clear that age,

genetic predisposition and environmental stressors in-

crease the risk. At the cellular level, oxidative stress,

chronic neuroinflammation, mitochondrial dysfunc-

tion and aberrant protein aggregation have been im-

plicated as contributing factors. These detrimental

processes are counteracted by elaborate networks of

cellular defence mechanisms, one of which is orche-

strated by transcription factor nuclear factor‐erythroid
2 p45‐related factor 2 (Nrf2; gene name NFE2L2).

A wealth of preclinical evidence suggests that Nrf2

activation is beneficial in cellular and animal models of

PD. In this review, we summarise the current under-

standing of mitochondrial dysfunction in PD, the role of
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Nrf2 in mitochondrial function and explore the potential

of Nrf2 as a therapeutic target for mitochondrial dys-

function in PD.

K E YWORD S

Nrf2, oxidative stress, Parkinson's disease

1 | INTRODUCTION

Parkinson's disease (PD) is a neurodegenerative, progressive movement disorder, the prevalence of which is

projected to double by 2030, reaching 9.3 million in the world's 10 most populous nations.1 Pathologically, PD is

characterised by the death of A9‐type dopaminergic neurons in the substantia nigra, and the accumulation of

proteinaceous aggregates in neurones.2,3 These aggregates are described as Lewy bodies, which are predominantly

made up of α‐synuclein protein. Degeneration of these dopaminergic neurones leads to deficit levels of dopamine,

an essential neurotransmitter involved in the basal ganglia network regulating motor function.4 Clinically, patients

experience a range of motor symptoms, collectively known as Parkinsonism, which include tremors, rigidity and

bradykinesia.5 Non‐motor symptoms include sleep disorders, apathy and pain.6 Currently, motor symptoms are

treated with levodopa, dopamine agonists, monoamine oxidase‐B inhibitors and catechol‐O‐methyl‐transferase
inhibitors as there are no disease‐modifying therapies.7

There are two subtypes of PD, an idiopathic form and a familial genetic form.8 Seminal work in the past couple

of decades has identified genes involved in the autosomal dominant and recessive forms of monogenetic PD.9–12

For example, genes encoding α‐synuclein (SNCA) and leucine‐rich repeat kinase 2 (LRKK2), respectively, were

shown to cause autosomal dominant PD with features of Lewy pathology.11,13 Additionally, recessive autosomal

mutations in PINK1, PARKIN and DJ1 were shown to cause an earlier onset of Parkinsonism, but with slower

progression independently of Lewy pathology.14 Many of these genes also have risk alleles for the development of

idiopathic PD,15,16 suggesting the two subtypes could share similar underlying mechanisms of pathogenesis.

With the current understanding of the genes involved and the hallmarks of PD, several detrimental cellular

processes have been implicated. For instance, oxidative stress, neuroinflammation, aberrant protein ag-

gregation and mitochondrial dysfunction are all involved.8,17,18 These damaging processes are counteracted by

induction of cytoprotective pathways. One prominent cytoprotective pathway is orchestrated by the tran-

scription factor, nuclear factor erythroid 2 p45‐related factor 2 (Nrf2).19–21 Nrf2 regulates the expression of

several genes containing “antioxidant response elements” (AREs) in their promoters, which function to restore

homeostasis after encountering electrophilic, inflammatory or oxidative stress.22 Recent findings strongly

suggest that Nrf2 may have several significant roles in mitochondrial function,23,24 providing a potential

therapeutic target for mitochondrial dysfunction in PD. The aim of this review is to summarise the current

understanding on mitochondrial dysfunction in PD, the role of Nrf2 in mitochondrial function and ultimately

explore its potential as a therapeutic target in PD.

2 | MITOCHONDRIAL HOMEOSTASIS

2.1 | Mitochondrial ROS signalling

Mitochondria are often described as cellular “power houses” due to their crucial function in synthesising

adenosine triphosphate (ATP) through the process of oxidative phosphorylation (OXPHOS).25 OXPHOS is
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particularly important for neurones, which are highly metabolic and require high levels of ATP for neuro-

transmission and maintenance of ionic gradients across cell membranes.26 Mitochondria are also one of

the major contributors of reactive oxygen species (ROS) in the cell.27,28 Leakage of electrons at complex

I and II of the electron transport chain (ETC), complex I damage and structural remodelling of mitochondrial

supercomplexes, can cause incomplete reduction of oxygen, producing superoxide.29–32 However, mi-

tochondria are equipped with superoxide dismutase 1 (SOD1) and 2 (SOD2) to prevent the potential da-

maging effects of superoxide. Activity of SOD1 and 2 cause superoxide to be converted into hydrogen

peroxide in the mitochondrial intermembrane space and mitochondrial matrix, respectively. Unlike super-

oxide, hydrogen peroxide is relatively stable, making it a suitable signalling molecule. This is an important

factor to highlight as several pathologies, including PD, report the detriments of excessive ROS, but ignore

the significant role they play as signalling molecules in regulating cellular processes.33 For example, mi-

tochondrial ROS have been implicated in autophagy,34 hypoxia35 and immunity by activating toll‐like
receptor‐initiated pathways.36 More recently, it has been considered that exposure to ROS may actually

stimulate health and wellbeing. Low levels of ROS, which do not tip cells into oxidative stress, are considered

to be prime defence mechanisms via mitohormesis.33 This process initiates adaptive responses which pre-

pare and protect the cells from future insults.

2.2 | Fusion, fission and mitophagy

Mitochondria play fundamental roles in cell function and homeostasis, making mitochondrial quality control

imperative. One way by which mitochondria maintain a healthy network and population is through the

equilibrium of fission and fusion.37 This is particularly important in neurones.38,39 Both fission and fusion are

regulated by GTPase proteins such as dynamin‐related protein 1 (Drp1), optic atrophy 1 (OPA1) and mi-

tofusins 1 and (Mfn1 and Mfn2). In fission, mitochondria divide and Drp1 ultimately controls the splitting of

the mitochondrial outer membrane to form two daughter organelles.40 In fusion, both the outer and inner

membranes of the mitochondria coordinately fuse with neighbouring mitochondria due to OPA1, Mfn1

and Mfn2 activity. These fusion–fission cycles are essential for maintaining a homogenous healthy

mitochondrial population by ensuring that functional mitochondria are undergoing continuous exchange

and mixing of content.41

Unhealthy or dysfunctional mitochondria, such as those with altered mitochondrial membrane potential, are

unable to join the mitochondrial network though fusion and are consequently selected for degradation via mito-

phagy. Mitophagy is a process by which mitochondria are enveloped into double membrane autophagosomes

(Figure 1). These then fuse with lysosomes ultimately leading to the degradation of their inner contents. The

regulation and contribution of mitophagy to neurodegenerative diseases are topics of great interest with several

ongoing investigations but many unanswered questions remain.42

A well‐studied mitophagy pathway is the PTEN‐induced putative kinase 1 (PINK1) and Parkin pathway in

which recessive mutations and risk alleles have been shown to be associated with genetic and idiopathic

PD.14,16,43 In healthy conditions, PINK1 is integrated into the mitochondrial membrane and is cleaved on the

N‐terminus by mitochondrial proteases like presenilins‐associated rhomboid‐like protein.44 The cleaved

form of PINK1 is then degraded by ubiquitin mediated proteasome degradation upon its retranslocation

from the mitochondrial membrane into the cytoplasm.45 However, when mitochondria are damaged and an

irreversible loss in mitochondrial membrane potential occurs, uncleaved PINK1 becomes stable on the

mitochondrial membrane.46 Stabilisation of full‐length PINK1 allows it to phosphorylate several proteins,

including ubiquitin and Parkin.47 Furthermore, both phosphorylation events, one, at serine 65 located at the

N‐terminal ubiquitin‐like domain of Parkin and another, at serine 65 of ubiquitin, are essential for full
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activation of Parkin,48–50 which ubiquitinates several outer mitochondrial membrane proteins, triggering

mitophagy (Figure 1).

2.3 | Mitochondrial biogenesis

In coordination with mitophagy and the fusion–fission cycle, mitochondrial biogenesis also occurs. Mitochondrial

biogenesis is defined as the “growth and division of preexisting mitochondria” which can be induced in response

to several environmental factors such as oxidative stress, energy demand, exercise and differentiation.51

Although mitochondria contain their own genetic material, they rely on nuclear transcription and cytosolic

translation of 1000–1500 proteins, which must be spatiotemporally regulated for correct mitochondrial bio-

genesis to occur. One way by which this is accomplished is through the major transcriptional regulator per-

oxisome proliferator‐activated receptor gamma coactivator (PGC)1α.52 PGC1α induces nuclear respiratory

factors 1 and 2 and binds to nuclear respiratory factor 1 to co‐activate mitochondrial transcription factor A

(TFAM) through promoter binding.53 TFAM serves several functions to the mitochondria such as regulation of

the initiation of mitochondrial DNA (mtDNA) transcription, mtDNA copy number and mtDNA packaging.54

Interestingly, stimulation of α7 acetylcholine nicotinic receptor (nAChR)‐mediated signalling increases mi-

tochondrial biogenesis via Nrf2, heme oxygenase 1 (HO‐1) and PGC1α.55

F IGURE 1 PTEN‐induced putative kinase 1 (PINK1)–Parkin mediated mitophagy. When mitochondria are
stressed or unhealthy, the mitochondrial membrane potential (ΔΨm) drops. This causes full length PINK1 to be
stabilised on the mitochondrial membrane. The kinase activity of PINK1 causes it to autophosphorylate and
phosphorylate ubiquitin and Parkin, which is then recruited to the outer mitochondrial membrane and
ubiquitinates several outer mitochondrial membrane proteins. Such ubiquitin chains are then bound by mitophagic
substrate adaptors like p62, which then bind to LC3‐II to form an autophagosome. Here, damaged mitochondria

are enclosed and fused with lysosomes for degradation
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3 | MITOCHONDRIAL DYSFUNCTION IN PARKINSON'S DISEASE

3.1 | Complex I impairment

As neurones are highly dependent on the mitochondria for their metabolic and functional needs, it is no

surprise that they are also very sensitive to mitochondrial dysfunction. Indeed, several neurodegenerative

diseases are associated with mitochondrial dysfunction and oxidative stress.56 More specifically, a substantial

number of studies support the notion that mitochondrial dysfunction plays a significant role in the

pathogenesis of PD. Early evidence was uncovered in the 1980s when several neurotoxins including rotenone,

1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine (MPTP) and paraquat, were shown to induce Parkinsonism

through inhibition of complex I in the ETC.57,58 These discoveries provided a core platform for the generation

of various animal and cell models currently used to study idiopathic PD.58 Further supporting the significance

of complex I in PD was the finding that several subunits of complex I were decreased in the striata of

postmortem brains of PD patients compared to controls, suggesting this to be a crucial factor in PD.59,60

Interestingly, α‐synuclein, the fundamental component of Lewy bodies observed in PD, has also been shown to

impair complex I in cell lines and transgenic mouse models.61

Although it is widely accepted that complex I has a role in PD pathology, the precise details are not fully

understood. It is hypothesised that complex I inhibition causes alterations to the ETC activity which consequently

affects the mitochondrial membrane potential and may, therefore, increase the level of ROS production, tipping

cells into the state of oxidative stress. However, when Choi et al62 produced a transgenic complex I deficient in‐
vivo model; dopaminergic neurones from this model were shown to have normal levels of ATP, ROS and oxygen

consumption. Moreover, increased sensitivity to rotenone was also observed in these dopaminergic neurones. This

is surprising and suggests that other intrinsic factors have a role in dopaminergic neuron vulnerability in PD.

Notably, the ETC proteins can form dynamic supercomplexes, the assembly of which provides an adaptive

mechanism to varying carbon sources.63 Studies in mitochondria from fibroblasts of patients with mutations in

PINK1 have found that the levels of free complex I, and the ratio of free versus supercomplexes‐bound complex I,

are decreased in PD. Although the levels of free complex III are not affected, the ratio of free versus

supercomplexes‐bound complex III is decreased, and complex IV is significantly diminished.31 These findings

suggest that structural remodelling of mitochondrial supercomplexes could be an important contributor to the

bioenergetics deficits in PD.

3.2 | Mutations in PD impinging on mitochondrial homeostasis and function

The strongest line of evidence for mitochondrial dysfunction in PD was provided by the influential discoveries of

PD‐associated genes, which have been shown to directly or indirectly interfere with mitochondrial function.

Although PINK1 is not required for basal mitophagy, even in tissues of high metabolic demand,64 PINK1 (also

known as PARK6) mutations or silencing leads to dysfunctional mitophagy,65,66 increased sensitivity to oxidative

stress,67 defective mitochondrial calcium regulation,67–69 impaired respiration and impaired ETC substrate

availability in a range of PD models. More recently, PINK1 has also been shown to protect cells from α‐synuclein
induced cytotoxicity by preventing its localisation to the mitochondria and targeting it for autophagy.70 Generally,

PINK1 mutations, which are causatively associated with autosomal recessive PD71 lead to loss of function in

PINK1,72,73 which in turn, may cause bioenergetic dysfunction in neurones.74

Parkin (also known as PARK2), an E3 ubiquitin ligase, is also found to be mutated in PD and acts downstream

of PINK1 in mitophagy.75 Parkin has been reported to protect dopaminergic neurones against mitochondrial

stress.76 The actual mechanisms by which this occurs have not been fully elucidated, but the PINK1–Parkin

pathway was shown to be activated.
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LRRK2 mutations cause autosomal dominant familial PD. Several studies have shown that LRRK2 mutations

have detrimental effects on the mitochondria. For example, mutant or kinase‐dead LRRK2 mediates weaker

protection in nematodes (expressing neuronal human LRRK2) to rotenone or paraquat, relative to the wild‐type
LRRK2.77 Wang et al.78 also showed the importance of LRRK2 in regulating mitochondrial dynamics through

Drp1. Moreover, in induced pluripotent stem cell‐derived neuronal cells from PD patients, LRRK2 mutations were

shown to cause DNA mitochondrial damage.79

A recent study suggests that there is crosstalk between LRRK2 signalling and PINK1‐regulated mitochondrial

homeostasis.80 Activation of PINK1 indirectly induces the phosphorylation of the small GTPase Rab8A at

serine 111,81 whereas LRRK2 mediates the phosphorylation of Rab8A at threonine 72.82,83 Interestingly, serine

111 phosphorylation prevents threonine 72 phosphorylation by LRRK2 and impairs the interactions of Rab8A with

its cognate guanine nucleotide exchange factor and GTPase activating protein.80

Mutations in DJ1 (also known as PARK7) are also reported in familial PD.84 Loss of DJ1 causes mitochondrial

depolarisation, fragmentation and increased autophagy.85 Interestingly, the authors showed that DJ1 is involved in

the maintenance of mitochondrial function during oxidative stress. This supports the understanding that DJ1 can

stabilise Nrf2 under such conditions.86 In addition, DJ1 was shown to be protective in the absence of PINK1,

suggesting its neuroprotective effects are parallel to PINK1.87

4 | NRF2

Nrf2 is a basic leucine zipper transcription factor which regulates the gene expression of a battery of cytoprotective

proteins involved in numerous cellular processes, including ROS scavenging, xenobiotic metabolism and detoxification,

glutathione and nicotinamide adenine dinucleotide phosphate (NADPH) homeostasis, and autophagy.19–21 In homeo-

static conditions, Nrf2 is continuously targeted for ubiquitin‐dependent proteasomal degradation by several negative

regulatory complexes. The most studied negative regulator of Nrf2 is the Cullin 3/Ring‐box1 E3 ubiquitin ligase complex

substrate adaptor protein Kelch‐like ECH‐associated protein 1 (Keap1). Homodimeric Keap1 binds to the Nrf2‐ECH
homology (Neh) 2 domain of one Nrf2 molecule through two motifs, the lower affinity DLG motif and the higher affinity

ETGE motif (Figure 2). Once bound, Nrf2 is correctly positioned for ubiquitination by Cullin 3 at the seven lysine

residues present between the two motifs. Consequently, Nrf2 is then targeted for 26S proteasome degradation and,

therefore, kept in low abundance within the cell. Nrf2 can also be regulated by another ubiquitin dependent pathway

via the GSK3/β‐TrCP/Cul1 (glycogen synthase kinase 3/β‐transducin repeat‐containing protein/Cullin 1) complex which,

following phosphorylation, induces Nrf2 degradation through the Neh 6 domain (Figure 2).88,89

In environments of oxidative and electrophilic stress, the degradation of Nrf2 is disrupted. This is due to the

chemical modification (e.g., oxidation, alkylation) of cysteine residues in Keap1 that serve as sensors for electro-

philes and oxidants.90 Such modifications alter the substrate adaptor function of Keap1 and renders it unable to

target Nrf2 for degradation.91 Therefore, Nrf2 remains bound to Keap1, saturating available Keap1 homodimers

and allowing newly synthesised Nrf2 to translocate to the nucleus to dimerize with small musculoaponeurotic

fibrosarcoma (sMaf) proteins for ARE‐mediated target gene transcription. Notably, although we focus on the

Keap1‐mediated regulation of Nrf2 in this review, disruption of the Nrf2 degradation through both GSK3/β‐TrCP/
Cul1 and Keap1/Cul3 pathways has been shown to be beneficial in models of PD.

5 | NRF2 IN PD

The published literature strongly suggests that Nrf2 has a protective role in PD.92 A meta‐analysis of nine PD

microarray datasets identified 31 common downregulated genes containing the ARE consensus sequence, despite

increased levels of Nrf2,93 suggesting that Nrf2 signalling may be impaired. Moreover, the Nrf2‐target proteins
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NAD(P)H:quinone oxidoreductase 1 and p62/sequestome‐1 (SQSTM1) were partly sequestered in Lewy bodies in

post‐mortem samples of PD patients.94 Nrf2 signalling is also impaired in human A9‐type dopaminergic neurones

expressing mutant SNCA. Low Nrf2 activity resulted in reduced expression of microtubule‐associated protein

(Map1b), which in turn caused neuritic defects that could be rescued by Nrf2 activation.95 Conversely, a single‐
nucleotide polymorphism within the regulatory region of the MAPT gene (encoding microtubule‐associated protein

Tau), which is consistently occupied by Nrf2/sMaf, was associated with a highly protective allele that had been

identified in multiple genome‐wide association studies of PD.96 Additionally, a haplotype of the NFE2L2 gene

(encoding Nrf2) that includes a promoter polymorphism resulting in enhanced Nrf2 transcriptional activity was

F IGURE 2 Regulation of Nrf2. (A) In homeostatic conditions, Nrf2 is targeted for proteasome degradation
through GSK3/β‐TrCP/Cul1 and Keap1/Cul3 via the Neh6 and Neh2 domains, respectively. Keap1 binds to the

DLG and ETGE motifs in the Neh2 domain of Nrf2. Keap1 recruits the Cullin 3 complex, which ubiquitinates seven
lysine residues found between the two motifs. In electrophilic/oxidative stress or exposure to electrophilic
activators of Nrf2, Keap1 is modified and unable to target Nrf2 for degradation. Additionally, Nrf2 can be
phosphorylated by GSK3, which recruits the β‐TrCP/Cullin 1 complex. This complex can also ubiquitinate Nrf2 for
proteasome degradation. Phosphorylation of GSK3, for example by Akt, causes it to become inactive. Here, it is
unable to phosphorylate Nrf2 at the Neh6 domain and, therefore, prevents β‐TrCP/Cullin 1 dependent
degradation. (B) In oxidative/electrophilic stress or exposure to electrophilic Nrf2 activators, Keap1 is unable to
target Nrf2 for degradation. This causes newly synthesised Nrf2 to stabilise in the cytoplasm and translocate to the
nucleus. In the nucleus, Nrf2 binds to small Maf (sMaf) proteins and together they bind to antioxidant response
elements (ARE) found in the promoters of Nrf2 target genes to initiate gene transcription. GSK3/β‐TrCP/Cul1,
glycogen synthase kinase 3/β‐transducin repeat‐containing protein/Cullin 1; Keap1, Kelch‐like ECH‐associated
protein 1; Nrf2, nuclear factor‐erythroid 2 p45‐related factor 2
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shown to be associated with a reduced risk for or a later onset of PD.97 Four independent European and one

Australian case‐control studies have supported this initial finding.98,99 By contrast, no association of such

polymorphisms with PD was observed in a Taiwanese population,100 indicating that differences in ethnicity and/or

environment are important determinants of disease susceptibility. The role of environmental factors is further

supported by a study, which concluded that common NFE2L2 variants could be particularly important in reducing

PD susceptibility under conditions of pesticide exposure.99

6 | NRF2 AND MITOCHONDRIAL HEALTH

6.1 | Nrf2 and oxidative phosphorylation

The role of Nrf2 in the maintenance of overall cellular redox homeostasis is well accepted in the field. More recent

evidence suggests that Nrf2 may also have a perquisite role in mitochondrial structure, function and integrity.23,24

More specifically, Nrf2 has a critical role in the regulation of mitochondrial respiration and redox homeostasis.101

In isolated Nrf2‐knockout (Nrf2‐KO) mouse embryonic fibroblast cells and primary cultured neurones, the basal

mitochondrial membrane potential, oxygen consumption rate and ATP levels were lower in comparison to their

wild‐type counterparts. Moreover, by using OXPHOS and glycolysis inhibitors, it was demonstrated that Nrf2

alters the way by which ATP is produced in cells. When wild‐type neurones were treated with the complex V

inhibitor, oligomycin, a dramatic decline in ATP production was observed. This was not altered when iodoacetic

acid (an inhibitor of glycolysis) was added to the cells, suggesting glycolysis is not involved in the production of ATP

in these cells. Conversely, in Nrf2‐KO cells treated with oligomycin, an increase in ATP production was described.

Interestingly, ATP was completely depleted with the addition of iodoacetic acid, suggesting that in Nrf2‐KO cells,

glycolysis is the main source of ATP and not OXPHOS. In addition, the increase in ATP upon oligomycin addition

shows that complex V, which usually functions as an ATP‐synthase in OXPHOS, is actually functioning as an ATP‐
ase. It is likely that this switch in activity is to maintain the mitochondrial membrane potential required for

mitochondrial integrity. The rate of regeneration of both NADH and FADH2 (complex II substrate) were also

slower in the Nrf2‐KO cells.101

6.2 | Nrf2 and mitophagy

A significant proportion of the literature highlights the importance of Nrf2 in mitochondrial integrity. Nrf2 has a

range of downstream target genes, which are involved in selective autophagy. For example, p62/and autophagy‐
related gene 8 (ATG8).102–104 p62 is an important player in PINK1–Parkin mitophagy105 and has been shown to

have roles in the maintenance of the mitochondrial membrane potential and bioenergetics (Figure 1).106,107

Moreover, in p62‐KO cells, a similar mitochondrial phenotype to Nrf2‐KO was observed.101,107 Pharmacological

activation of Nrf2 with RTA‐408, sulforaphane or TBE‐31 in these cells, increased complex I substrate NADH and

restored the mitochondrial membrane potential.107 It is clear that both Nrf2 and p62 are important in mi-

tochondrial bioenergetics. p62 is also considered to be important in mitophagy but whether this is regulated by

Nrf2 remains to be elucidated.

As previously mentioned, PINK1 plays a prominent role in the quality control of mitochondria by initiating

the process of mitophagy in unhealthy damaged mitochondria. Interestingly, PINK1 has also been shown to have

four potential ARE sequences in its promoter, suggesting that PINK1 is regulated by Nrf2. Indeed, it was shown

that pharmacological induction of Nrf2, for example by tert‐butyl‐hydroquinone (tBHQ), caused increased

PINK1 protein expression and messenger RNA (mRNA) levels, which was lost when validated Nrf2 small in-

terfering RNAs (siRNAs) were used.108 These inducers increased hydrogen peroxide levels, and co‐treatment of

8 | BENTO‐PEREIRA AND DINKOVA‐KOSTOVA



them with antioxidant N‐acetylcysteine abolished the induction of PINK1, suggesting the Nrf2–PINK1 axis is

dependent on ROS. Further supporting the link between Nrf2 and PINK1, is the effect of tomatidine in the

induction of mitophagy in Caenorhabditis elegans (C. elegans) via SKN‐1 (Nrf2 homologue).109 Tomatidine,

abundantly found in unripen tomatoes, induced mitophagy through DCT‐1 (PINK1 homologue) and similar to

Murata et al,108 it was proposed that ROS are key to this process. Low levels of ROS induced by tomatidine are

thought to activate Nrf2, which ultimately leads to mitophagy. However, in this study, the knockout (KO) or

knockdown (KD) effect of Nrf2/SKN‐1 was not shown and, therefore, other pathways may be involved. This is

particularly important to establish in view of the fact that SKN‐1 is even more closely related to the endoplasmic

reticulum‐residing transcription factor nuclear factor‐erythroid 2 p45‐related factor 1 (Nrf1, gene name NFE2L1,

not to be confused with nuclear respiratory factor 1), which like Nrf2, controls ARE‐mediated transcription.110

Overall, emerging evidence suggests that Nrf2 might be an important mediator of PINK1‐induced mitophagy

and, therefore, overall mitochondrial integrity.

It has been suggested that PINK1 can also influence Nrf2 activity and expression.111 In a model of ubiquitin

proteasome system dysfunction, mutant PINK1 (G309S) inhibited heme‐oxygenase 1 (HO‐1) expression, an Nrf2

target gene, in SH‐SY5Y cells.111 Moreover, in this MG132‐induced model, Nrf2 nuclear translocation, protein and

mRNA levels were antagonised by PINK1 G309D. First, this suggests that PINK1 has a role in regulating Nrf2

transcriptional activity. Second, the location of this mutation on PINK1 could be responsible for Nrf2 suppression.

This missense mutation is known to cause PD, possibly through impairment of PINK1 kinase activity, substrate

recognition or defects in complex I.111,112 Together, these findings suggest that Nrf2 may potentially require

PINK1‐dependent signalling to mediate its cytoprotective effects through downstream targets on mitochondria

independently of mitophagy (Figure 3).

A population of Nrf2 has been shown to be tethered to the mitochondria in a quaternary complex with a

Keap1 dimer though the mitochondrial serine/threonine protein phosphatase PGAM family member

5 (PGAM5).113 The actual role of this complex is not clearly defined. However, knockdown of PGAM5 debilitated

PINK1‐induced mitophagy in vitro, led to degeneration of dopaminergic neurones and induced Parkinson‐like
movement phenotype in mice.114 The same study showed that PGAM5, through an evolutionary conserved region

(amino acids 98–110), directly binds and stabilises wild‐type, but not PD‐associated mutant PINK1. The role of

Nrf2 within the PGAM5‐Nrf2‐Keap1 complex on mitophagy is yet to be studied.115 Collectively, based on the

findings from the work of Murata et al.108 and Lu et al.,114 it could be proposed that the PGAM5‐Nrf2‐Keap1
complex may function with Keap1 as an immediate mitochondrial ROS sensor which allows newly synthesised Nrf2

to accumulate and induce PINK1 expression. PINK1 is then stabilised by PGAM5 in the complex to initiate

mitophagy (Figure 3).

Notably, recent studies have uncovered a PINK1/Parkin‐independent mitophagy pathway mediated by p62,

Keap1 and Rbx1, where Keap1 and Rbx1 are recruited to p62, promoting mitochondrial ubiquitination.116,117

Inhibiting the interaction of p62 with Keap1 prevents p62‐mediated mitochondrial ubiquitination.

6.3 | Nrf2 and mitochondrial trafficking

In another context, knockdown of Nrf2 in the Nrf2‐PGAM5‐Keap1 complex hindered mitochondrial retro-

grade trafficking in induced proteasome inhibition.115 This was due to aberrant degradation of Miro2 by

unconstrained Keap1‐Cullin 3 activity. Miro2 is a mitochondrial outer membrane Rho GTPase involved in

physically linking mitochondria to microtubules for trafficking. Here, Nrf2 serves a nontranscriptional role in

keeping Keap1 occupied, preventing Miro2 degradation and allowing mitochondrial retrograde trafficking,

which is of particular importance for neurones. However, an attempt to coimmunoprecipitate Keap1

and Miro2 did not detect binding, suggests that this interaction may be indirect and other proteins and

complexes may be involved.
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6.4 | Nrf2 and mitochondrial biogenesis

ARE sequences have been reported in the promoters of PGC1α and nuclear respiratory factor 1, both of which are

essential for mitochondrial biogenesis, suggesting that Nrf2 regulates their expression.108,118 More specifically, in

mouse heart, HO‐1 induced Nrf2 activation, which in turn upregulated nuclear respiratory factor 1 on both the

protein and mRNA level. This ultimately protected cells from the cardiotoxin, doxorubicin, through increased

mitochondrial biogenesis.118 Further supporting the role of Nrf2 in mitochondrial biogenesis, tomatidine, which

activates Nrf2, was also shown to increase mitochondrial content, mitochondrial membrane potential and cellular

ROS in C. elegans and primary rat cortical neurones.109 Additionally, a concentration dependent increase in SOD2,

complex IV‐COX II, COX‐VI and heat shock protein 60 mitochondrial proteins were observed in human neural cells

upon treatment with tomatidine. Furthermore, Merry and Ristow119 showed that in addition to nuclear respiratory

factor 1 and antioxidant enzymes like SOD2, TFAM was also upregulated by Nrf2 in skeletal muscle post‐acute
exercise. Considerable evidence proposes Nrf2 to have a direct role in mitochondrial biogenesis through

upregulation of important transcription factors across a range of tissues. However, limited studies focus on the

importance of Nrf2 and its mechanisms in neuronal mitochondrial biogenesis. Indeed, Fang et al109 address this to

some extent but do not establish whether the tomatidine‐induced biogenesis is due to Nrf2 alone.

F IGURE 3 Hypothetical PINK1–Nrf2 axis. (1) Reactive oxygen species (ROS) from the mitochondria (or other
cellular components) modify Keap1 in the PGAM5‐Nrf2‐Keap1 quaternary complex (2), potentially preventing
Nrf2 turnover. This may allow Nrf2 levels to stabilise in the cytoplasm (3) and translocate to the nucleus for
transcription of Nrf2‐dependent genes, including NAD(P)H:quinone oxidoreducase 1 (NQO1) and heme
oxygenase‐1 (HO‐1), as well as PINK1 (4) and subsequent translation (5). The resulting proteins are the actual
protectors (6). PGAM5 can then bind and facilitate the stabilisation of PINK1 on the mitochondrial membrane,
preventing its cleavage from presenilins‐associated rhomboid‐like protein. This stabilisation then initiates the
process of mitophagy (7), essential for the maintenance of a healthy mitochondrial population. In conditions of
ubiquitin‐proteasome system dysfunction (1a), also reported in PD, mutant PINK1 (2a) may inhibit Nrf2 mRNA
and/or protein levels, its nuclear translocation or transcriptional activity (3a). Such effects may inhibit the
expression of Nrf2 target genes, depriving the cell from this cytoprotective mechanism. mRNA, messenger RNA;
Nrf2, nuclear factor‐erythroid 2 p45‐related factor 2; PD, Parkinson's Disease; PGAM5, phosphoglycerate mutase
family member 5; PINK1, PTEN‐induced putative kinase 1; UPS, ubiquitin proteasome system
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6.5 | Nrf2 in mitochondrial dynamics

When mitochondria are stressed, they form a hyperfused network, which allows them to reduce ROS production,

increase ATP production and develop resistance against apoptotic signals. Drp1 activity blocks mitochondrial re-

cruitment and fission, but Nrf2 promotes the degradation of Drp1 allowing this hyperfusion response to occur.120 In

this study, Nrf2 overexpression reduced Drp1 levels and increased hyperfusion. This was further supported with Nrf2

pharmacological activation in rat hippocampi in vivo and in murine primary neurones and fibroblasts. It was also shown

that Nrf2 transcription was required for this effect on Drp1. Moreover, with proteasome inhibition, Drp1 levels

increased despite Nrf2 levels being elevated. This suggests that Nrf2‐dependent upregulation of proteasome activity

may cause decreased stability of Drp1 and hence hyperfusion in stress. Interestingly, this response was shown to be

independent of Keap1. In a Huntington's disease model in immortalized murine striatal cell lines, both fusion and Nrf2

signalling were impaired,121 which is consistent with muted Nrf2 activity in neural stem cells from Huntington's

disease patients.122 Interestingly, the Nrf2 inducer sulforaphane promotes hyperfusion, but independently of Nrf2.

Sulforaphane mediated its effects despite siRNA‐induced KD of Nrf2 or Keap1 in RPE‐1 cells and was shown to prevent

Drp1 localising and accumulating at the mitochondria.118

7 | TARGETING NRF2 IN MITOCHONDRIAL DYSFUNCTION IN PD

A large volume of preclinical experimental evidence supports the human data suggesting that Nrf2 has a protective role

in PD. Thus, the expression of human α‐synuclein in the ventral midbrain of Nrf2‐deficient mice leads to degeneration

of nigral dopaminergic neurons and increased dystrophic dendrites, reminiscent of Lewy neurites; this neuronal loss is

associated with neuroinflammation and gliosis.123 Nrf2‐deficient mice are also much more sensitive to the neurotoxic

effects of MPTP than their wild‐type counterparts, whereas Nrf2 activation has neuroprotective effects in Nrf2‐wild‐
type, but not Nrf2‐deficient mice in this model of PD,124–130 as well as in mice expressing human α‐synuclein.94 In both

models, these protective effects are associated with a decrease in oxidative damage and neuroinflammation. Nrf2

activation protects both neurones and astrocytes. Thus, astrocytes from adult rats are more susceptible to mi-

tochondrial toxicity caused by the MPTP metabolite 1‐methyl‐4‐phenylpyridinium (MPP+) than astrocytes from

newborn rats, but importantly, are protected by the Nrf2 activator tBHQ.131 Grafting primary postnatal astrocytes

above the substantia nigra of aged MPTP‐treated mice after the onset of motor symptoms led to Nrf2 activation and

counteracted the motor deficits.132 In a rotenone‐induced PD mouse model, Nrf2 activation increased the levels of

glutathione and lowered lipid peroxidation in the striatum and improved motor dysfunction.133 In addition to its

protective effects against oxidative stress and inflammation, Nrf2 activation protects against PD‐associated protein

toxicity. A longitudinal imaging platform has been developed to visualize the metabolism and location of mutant LRRK2

and α‐synuclein in living primary rat neurons at the single‐cell level.134 Using this platform, these researchers found that

Nrf2 reduced the toxicity of these proteins by accelerating the degradation of α‐synuclein and sequestering misfolded

diffuse LRRK2 into insoluble inclusion bodies.

Although many studies have explored the potential of Nrf2 inducers in PD,135–137 few have considered how

they may affect mitochondrial dysfunction in PD.138 Interestingly, Nrf2 and PINK1 deficiencies have similar effects

on mitochondrial bioenergetics. For example, similar to that of Nrf2 deficiency, it was shown that provisions of

complex I and II substrates to PINK1‐deficient cells led to recovery of the mitochondrial membrane potential and

mitochondrial respiration.68,139 This ultimately reduced the sensitivity of neurones to dopamine‐induced toxicity.

Such similarities between Nrf2 and PINK1 deficiencies suggest that activation of Nrf2 may potentially rescue

mitochondrial respiration in PINK1‐deficient cells and vice versa. Indeed, the mitochondrial membrane potential

was restored in primary murine PINK1‐KO co‐cultures of neurones and astrocytes when exposed to the penta-

cyclic cyanoenone triterpenoid Nrf2 inducer RTA‐408.139 Similar effects were seen with the isothiocyanate sul-

foraphane, a potent naturally occurring Nrf2 inducer.140 More importantly, these Nrf2 inducers were also able to
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significantly reduce cell death in dopamine‐exposed PINK1‐KO astro‐neural co‐cultures. Notably, RTA‐408 was

also shown to rescue the bioenergetics deficits, preserve the hippocampal neurons and astrocytes and dramatically

reduce the frequency of late spontaneous seizures in a rat model of epilepsy.141,142 Sulforaphane had a similar

effect.143 Here, Nrf2 inducers are illustrated to overcome mitochondrial dysfunctions, further supporting the

potential role of Nrf2 as a therapeutic target for PD. Indeed, the protective effects of sulforaphane have been

demonstrated in a number of PD mouse models. Thus, in the MPTP mouse model, administration of sulforaphane

increases Nrf2‐target gene expression in striatum and ventral midbrain, decreases the levels of proinflammatory

mediators and reduces the loss of dopaminergic neurons, astrogliosis and microgliosis; importantly, these effects

are not observed in Nrf2‐KO mice.126,127,129 Dietary intake of glucoraphanin, the biogenic precursor of sulfor-

aphane, is also protective.144 Similarly, in mouse models of 6‐dydroxy‐dopamine‐ or rotenone‐induced neuro-

toxicity, sulforaphane treatment enhances Nrf2‐target gene expression and reduces macromolecular damage,

degeneration of dopaminergic neurons and motor function deficits.145–147 In view of the convincing experimental

evidence from these animal models and considering that sulforaphane has been and currently is in multiple clinical

trials,21,148 it will be important to investigate its therapeutic potential in PD patients.

Dimethyl fumarate (DMF; trade names Tecfidera®, Skilarence®) is the only Nrf2 inducer which is currently in

clinical practice and is used for treatment of multiple sclerosis and moderate to severe plaque psoriasis.21,149,150

The potential of DMF and its active metabolite monomethylfumarate on Nrf2‐induced neuroprotection have been

compared in an MPTP‐induced PD model.151 It was shown that with increasing doses of DMF, there was increased

glutathione depletion, reductions in cell viability and inhibition of both mitochondrial oxygen consumption and

glycolysis. However, the opposite was observed with MMP, which caused increases in all of these parameters.

Despite their differences, both upregulated mitochondrial biogenesis in an Nrf2‐dependent manner. In vivo, both

blocked MPTP‐induced neurotoxicity in wild‐type, but not in Nrf2‐KO mice. This was shown to be due to the Nrf2

effect on several cellular processes, including mitochondrial function and biogenesis. Overall, both compounds

were shown to have neuroprotective effects.151 This study illustrates that targeting Nrf2 has the potential to

ameliorate mitochondrial dysfunction and other detrimental processes, such as neuroinflammation and oxidative

stress, which are also involved in PD.

A non‐electrophilic Nrf2 activator called p62‐mediated mitophagy inducer (PMI), which disrupts the

protein–protein interactions between Keap1 and Nrf2,152 has been shown to drive mitophagy without dissipating

the mitochondrial membrane potential or Parkin recruitment.153 PMI induces mitochondrial respiration and the

expression of p62.154 Similarly to PMI, other Keap1‐Nrf2 protein‐protein interaction inhibitors also induce mi-

tophagy.154 However electrophilic Nrf2 inducers, such as sulforaphane and DMF, which covalently modify Keap1,

are unable to induce such response,154 even though Nrf2 regulates the expression of several autophagy‐related
genes,155,156 and its activation by sulforaphane and other electrophilic inducers promotes autophagy.157,158 In

fact, co‐treatment of PMI with sulforaphane was shown to inhibit PMI‐induced effects like the accumulation of p62

required for mitophagy.154 Yet, both electrophilic and non‐electrophilic Nrf2 activators induce similar alterations

on mitochondrial morphology and bioenergetic profiles, suggesting that the reversible inhibition of the Keap1‐Nrf2

protein–protein interactions by PMI is specifically important for mitophagy.154 Most importantly, the PINK1‐
Parkin pathway was not required for mitophagy induced by PMI.153,154,159 This finding is particularly exciting as it

suggests that non‐electrophilic compounds that target Keap1 can be used to rescue mitochondrial turnover

without relying on the PINK1‐Parkin pathway, which is often defective in PD.

8 | OUTLOOK

Growing experimental evidence strongly places mitochondrial dysfunction as a prominent feature in PD, making it

a possible therapeutic target. With no available therapies and the substantial evidence supporting Nrf2 signalling in

mitochondrial homeostasis and integrity, targeting the Keap1‐Nrf2 pathway provides an exciting therapeutic
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strategy for PD. A large volume of research indicates that Nrf2 plays a significant role in the maintenance of

mitochondrial health, including the mitochondrial membrane potential, respiration, mitophagy and mitochondrial

biogenesis. Whether these functions are all met by Nrf2 in the PD brain remains to be further explored. However,

promising preclinical evidence already shows the protective effect of pharmacological Nrf2 activation in models of

PD. Further unravelling of the underlying mechanisms by which Nrf2 contributes to the maintenance of mi-

tochondrial homeostasis in PD may lead to promising new therapies.
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