11,017 research outputs found

    Crossovers in the Two Dimensional Ising Spin Glass with ferromagnetic next-nearest-neighbor interactions

    Full text link
    By means of extensive computer simulations we analyze in detail the two dimensional ±J\pm J Ising spin glass with ferromagnetic next-nearest-neighbor interactions. We found a crossover from ferromagnetic to ``spin glass'' like order both from numerical simulations and analytical arguments. We also present evidences of a second crossover from the ``spin glass'' behavior to a paramagnetic phase for the largest volume studied.Comment: 19 pages with 9 postscript figures also available at http://chimera.roma1.infn.it/index_papers_complex.html. Some changes in captions of figures 1 and

    Domain walls and chaos in the disordered SOS model

    Get PDF
    Domain walls, optimal droplets and disorder chaos at zero temperature are studied numerically for the solid-on-solid model on a random substrate. It is shown that the ensemble of random curves represented by the domain walls obeys Schramm's left passage formula with kappa=4 whereas their fractal dimension is d_s=1.25, and therefore is NOT described by "Stochastic-Loewner-Evolution" (SLE). Optimal droplets with a lateral size between L and 2L have the same fractal dimension as domain walls but an energy that saturates at a value of order O(1) for L->infinity such that arbitrarily large excitations exist which cost only a small amount of energy. Finally it is demonstrated that the sensitivity of the ground state to small changes of order delta in the disorder is subtle: beyond a cross-over length scale L_delta ~ 1/delta the correlations of the perturbed ground state with the unperturbed ground state, rescaled by the roughness, are suppressed and approach zero logarithmically.Comment: 23 pages, 11 figure

    Implications of the VHE Gamma-Ray Detection of the Quasar 3C279

    Full text link
    The MAGIC collaboration recently reported the detection of the quasar 3C279 at > 100 GeV gamma-ray energies. Here we present simultaneous optical (BVRI) and X-ray (RXTE PCA) data from the day of the VHE detection and discuss the implications of the snap-shot spectral energy distribution for jet models of blazars. A one-zone synchrotron-self-Compton origin of the entire SED, including the VHE gamma-ray emission can be ruled out. The VHE emission could, in principle, be interpreted as Compton upscattering of external radiation (e.g., from the broad-line regions). However, such an interpretation would require either an unusually low magnetic field of B ~ 0.03 G or an unrealistically high Doppler factor of Gamma ~ 140. In addition, such a model fails to reproduce the observed X-ray flux. This as well as the lack of correlated variability in the optical with the VHE gamma-ray emission and the substantial gamma-gamma opacity of the BLR radiation field to VHE gamma-rays suggests a multi-zone model. In particular, an SSC model with an emission region far outside the BLR reproduces the simultaneous X-ray -- VHE gamma-ray spectrum of 3C279. Alternatively, a hadronic model is capable of reproducing the observed SED of 3C279 reasonably well. However, the hadronic model requires a rather extreme jet power of L_j ~ 10^{49} erg s^{-1}, compared to a requirement of L_j ~ 2 X 10^{47} erg s^{-1} for a multi-zone leptonic model.Comment: Accepted for pulication. Several clarifications and additions to the manuscript to match the accepted versio

    Multiwavelength Signatures of Cosmic Ray Acceleration by Young Supernova Remnants

    Full text link
    An overview is given of multiwavelength observations of young supernova remnants, with a focus on the observational signatures of efficient cosmic ray acceleration. Some of the effects that may be attributed to efficient cosmic ray acceleration are the radial magnetic fields in young supernova remnants, magnetic field amplification as determined with X-ray imaging spectroscopy, evidence for large post-shock compression factors, and low plasma temperatures, as measured with high resolution optical/UV/X-ray spectroscopy. Special emphasis is given to spectroscopy of post-shock plasma's, which offers an opportunity to directly measure the post-shock temperature. In the presence of efficient cosmic ray acceleration the post-shock temperatures are expected to be lower than according to standard equations for a strong shock. For a number of supernova remnants this seems indeed to be the case.Comment: Invited review, to appear in the proceedings of "4th Heidelberg International Symposium on High Energy Gamma-Ray Astronomy 2008

    The Comparison of the Swift Gamma-Ray Bursts With and Without Measured Redshifts

    Full text link
    Gamma-ray bursts, detected by the Swift satellite, are separated into two samples: the bursts with and without determined redshifts. These two samples are compared by the standard Student t-test and F-test. We have compared the dispersions and the mean values of the durations, peak fluxes and fluences in order to find any differences among these two samples. No essential differences were found.Comment: Published in the Proceedings of the 4th Heidelberg International Symposium on High Energy Gamma-Ray Astronomy, 200

    Hadronic Production of Gamma Rays and Starburst Galaxies

    Full text link
    The Milky Way has been estabished to emit gamma rays. These gamma rays are presumably dominated by decays of neutral pions, although inverse Compton scatterings and bremsstrahlung also contribute. It is plausible that other galaxies can be diffuse sources of gamma rays in a similar manner. Starburst galaxies are particularly interesting to study as they are expected to have much higher cosmic-ray fluxes and interstellar matter densities. The neutral pions are created in cosmic-ray interactions with interstellar matter. Presented here is an overview of the recent work by Karlsson and co-workers on proton-proton interactions and the resulting secondary particle inclusive cross sections and angular distributions. This model can be used to calculated the π0\pi^{0} component of the gamma-ray yield and spectrum from a starburst galaxy. The yield is expected to increase significantly (30% to 50%) and the spectrum to be harder than the incident proton spectrum.Comment: 4 pages, 4 figures, submitted for the Proceedings of the 4th Heidelberg International Symposium on High Energy Gamma-Ray Astronomy, July 7-11, 2008, in Heidelberg, German

    Galactic and Extragalactic Magnetic Fields

    Full text link
    The strength of the total magnetic field in our Milky Way from radio Zeeman and synchrotron measurements is about 6 muG near the Sun and several mG in dense clouds, pulsar wind nebulae, and filaments near the Galactic Center. Diffuse polarized radio emission and Faraday rotation of the polarized emission from pulsars and background sources show many small-scale magnetic features, but the overall field structure in our Galaxy is still under debate. -- Radio synchrotron observations of nearby galaxies reveal dynamically important magnetic fields of 10-30 muG total strength in the spiral arms. Fields with random orientations are concentrated in spiral arms, while ordered fields (observed in radio polarization) are strongest in interarm regions and follow the orientation of the adjacent gas spiral arms. Faraday rotation of the diffuse polarized radio emission from the disks of spiral galaxies sometimes reveals large-scale patterns which are signatures of coherent fields generated by dynamos, but in most galaxies the field structure is more complicated. -- Strong magnetic fields are also observed in radio halos around edge-on galaxies, out to large distances from the plane. The synchrotron scaleheight of radio halos allows to measure the mean outflow velocity of the cosmic-ray electrons. The ordered halo fields mostly form an X-shaped pattern, but no large-scale pattern is seen in the Faraday rotation data. Diffuse polarized radio emission in the outer disks and halos is an excellent tracer of galaxy interactions and ram pressure by the intergalactic medium. -- Intracluster gas can also be significantly magnetized and highly polarized due to shocks or cluster mergers.Comment: 14 pages, 14 figures. To be published in "High Energy Gamma-Ray Astronomy", eds. F.A. Aharonian, W. Hofmann, and F.M. Rieger, AIP Conf. Proc. Updated and added references 28/11/2008; typo corrected and references updated 07/01/2009; typos corrected 12/01/200

    Particle Acceleration in Mildly Relativistic Shearing Flows: the Interplay of Systematic and Stochastic Effects, and the Origin of the Extended High-energy Emission in AGN Jets

    Full text link
    The origin of the extended X-ray emission in the large-scale jets of active galactic nuclei (AGNs) poses challenges to conventional models of acceleration and emission. Although the electron synchrotron radiation is considered the most feasible radiation mechanism, the formation of the continuous large-scale X-ray structure remains an open issue. As astrophysical jets are expected to exhibit some turbulence and shearing motion, we here investigate the potential of shearing flows to facilitate an extended acceleration of particles and evaluate its impact on the resultant particle distribution. Our treatment incorporates systematic shear and stochastic second-order Fermi effects. We show that for typical parameters applicable to large-scale AGN jets, stochastic second-order Fermi acceleration, which always accompanies shear particle acceleration, can play an important role in facilitating the whole process of particle energization. We study the time-dependent evolution of the resultant particle distribution in the presence of second-order Fermi acceleration, shear acceleration, and synchrotron losses using a simple Fokker--Planck approach and provide illustrations for the possible emergence of a complex (multicomponent) particle energy distribution with different spectral branches. We present examples for typical parameters applicable to large-scale AGN jets, indicating the relevance of the underlying processes for understanding the extended X-ray emission and the origin of ultrahigh-energy cosmic rays.Comment: 26 pages, 8 figures; to appear in Ap
    • …