11 research outputs found

    Carotid IMT and stiffness in the KiGGS 2 national survey : third-generation measurement, quality algorithms and determinants of completeness

    No full text
    Carotid intima-media thickness (cIMT) and carotid stiffness (CS) are important markers of atherosclerotic risk in the young. We assessed a novel third-generation method for its applicability in large population-based epidemiologic studies to determine strengths, limitations, completeness and predictors of unsuccessful measurement. Four thousand seven hundred ninety-eight 14- to 31-y-old participants of the German KiGGS cohort, which is based on a nationally representative sample with 11-y follow-up, underwent B-mode ultrasound examinations of the left and right common carotid artery with semi-automatic edge detection and automatic electrocardiogram-gated real-time quality control based on a sophisticated snake algorithm and subpixel interpolation. Overall completeness was 98% for far wall cIMT and 89% for CS parameters. Plane-specific completeness varied from 92%-96% for far wall and from 64%-69% for near-wall cIMT. Obesity independently predicted unsuccessful cIMT and CS measurements with odds ratios of 12.67 (95% confidence interval: 5.50-29.19) and 7.30 (4.87-10.94) compared with non-overweight after adjustment for blood pressure, cholesterol, smoking, hazardous drinking, age, sex and sonographer. Inter- and intra-rater reliabilities of cIMT and CS parameters in a sample of 15 young adults were good or excellent. Third-generation cIMT and CS measurements in the young with semi-automatic edge-detection and automatic real-time quality control has been successfully standardized with high reliability and very high completeness in a national survey setting. This provides a strong methodological foundation for further validation of the predictive value of cIMT and CS for atherosclerotic risk in the young

    Cohort profile for development of machine learning models to predict healthcare-related adverse events (Demeter): clinical objectives, data requirements for modelling and overview of data set for 2016–2018

    No full text
    Purpose In-hospital health-related adverse events (HAEs) are a major concern for hospitals worldwide. In high-income countries, approximately 1 in 10 patients experience HAEs associated with their hospital stay. Estimating the risk of an HAE at the individual patient level as accurately as possible is one of the first steps towards improving patient outcomes. Risk assessment can enable healthcare providers to target resources to patients in greatest need through adaptations in processes and procedures. Electronic health data facilitates the application of machine-learning methods for risk analysis. We aim, first to reveal correlations between HAE occurrence and patients’ characteristics and/or the procedures they undergo during their hospitalisation, and second, to build models that allow the early identification of patients at an elevated risk of HAE.Participants 143 865 adult patients hospitalised at Grenoble Alpes University Hospital (France) between 1 January 2016 and 31 December 2018.Findings to date In this set-up phase of the project, we describe the preconditions for big data analysis using machine-learning methods. We present an overview of the retrospective de-identified multisource data for a 2-year period extracted from the hospital’s Clinical Data Warehouse, along with social determinants of health data from the National Institute of Statistics and Economic Studies, to be used in machine learning (artificial intelligence) training and validation. No supplementary information or evaluation on the part of medical staff will be required by the information system for risk assessment.Future plans We are using this data set to develop predictive models for several general HAEs including secondary intensive care admission, prolonged hospital stay, 7-day and 30-day re-hospitalisation, nosocomial bacterial infection, hospital-acquired venous thromboembolism, and in-hospital mortality

    New data for action. Data collection for KiGGS Wave 2 has been completed

    Get PDF
    The fieldwork of the second follow-up to the German Health Interview and Examination Survey for Children and Adolescents (KiGGS) was completed in August 2017. KiGGS is part of the Robert Koch Institute’s Federal Health Monitoring. The study consists of the KiGGS cross-sectional component (a nationally representative, periodic crosssectional survey of children and adolescents aged between 0 and 17) and the KiGGS cohort (the follow-up into adulthood of participants who took part in the KiGGS baseline study). KiGGS collects data on health status, healthrelated behaviour, psychosocial risk and protective factors, health care and the living conditions of children and adolescents in Germany. The first interview and examination survey (the KiGGS baseline study; undertaken between 2003 and 2006; n=17,641; age range: 0-17) was carried out in a total of 167 sample points in Germany. Physical examinations, laboratory analyses of blood and urine samples and various physical tests were conducted with the participants and, in addition, all parents and participants aged 11 or above were interviewed. The first follow-up was conducted via telephone-based interviews (KiGGS Wave 1 2009-2012; n=11,992; age range: 6-24) and an additional sample was included (n=4,455; age range: 0-6). KiGGS Wave 2 (2014-2017) was conducted as an interview and examination survey and consisted of a new, nationwide, representative cross-sectional sample of 0- to 17-year-old children and adolescents in Germany, and the second KiGGS cohort follow-up. The completion of the cross-sectional component of KiGGS Wave 2 means that the health of children and adolescents in Germany can now be assessed using representative data gained from three study waves. Trends can therefore be analysed over a period stretching to over ten years now. As the data collected from participants of the KiGGS cohort can be individually linked across the various surveys, in-depth analyses can be conducted for a period ranging from childhood to young adulthood and developmental processes associated with physical and mental health and the associated risk and protective factors can be explored. As such, KiGGS Wave 2 expands the resources available to health reporting, as well as policy planning and research, with regard to assessing the health of children and adolescents in Germany

    Neue Daten fĂĽr Taten. Die Datenerhebung zur KiGGS Welle 2 ist beendet

    Get PDF
    Im August 2017 wurde die Feldphase der zweiten Folgeerhebung der Studie zur Gesundheit von Kindern und Jugendlichen in Deutschland (KiGGS) beendet. KiGGS wird im Rahmen des bundesweiten Gesundheitsmonitorings am Robert Koch-Institut durchgeführt. Die Studie beinhaltet wiederholt durchgeführte, für Deutschland repräsentative Querschnitterhebungen bei Kindern und Jugendlichen von 0 bis 17 Jahren (KiGGS-Querschnitt) und die Weiterbeobachtung der Teilnehmenden der KiGGS-Basiserhebung bis ins Erwachsenenalter (KiGGS-Kohorte). Es werden Daten zum Gesundheitszustand, zum Gesundheitsverhalten, zu psychosozialen Schutz- und Risikofaktoren, zur Gesundheitsversorgung und zu den Lebensbedingungen der Kinder und Jugendlichen in Deutschland erhoben. Der erste Untersuchungs- und Befragungssurvey (KiGGS-Basiserhebung, 2003 – 2006; n = 17.641; Altersbereich 0 – 17 Jahre) wurde in insgesamt 167 Städten und Gemeinden in Deutschland durchgeführt. Neben körperlichen Untersuchungen, Laboranalysen und verschiedenen Tests wurden die Eltern und zusätzlich ab 11 Jahren die Teilnehmenden selbst befragt. Die erste Wiederbefragung der Studienpopulation fand im Rahmen der KiGGS Welle 1 (2009 – 2012; n = 11.992; Altersbereich 6 – 24 Jahre) als telefonbasiertes Interview statt; zusätzlich wurde eine neue Stichprobe einbezogen (n = 4.455; Altersbereich 0 – 6 Jahre). Die als Untersuchungs- und Befragungssurvey durchgeführte KiGGS Welle 2 (2014 – 2017) setzt sich zusammen aus einer neuen bundesweit repräsentativen Querschnittstudie für 0- bis 17-jährige Kinder und Jugendliche in Deutschland und dem zweiten Follow-up der KiGGS-Kohorte. Mit Abschluss der Querschnittstudie von KiGGS Welle 2 ist es möglich, auf der Basis von repräsentativen Daten von drei Messzeitpunkten, Aussagen zur gesundheitlichen Lage der Kinder und Jugendlichen in Deutschland zu treffen. Es können Trends über einen Zeitraum von etwas mehr als zehn Jahren berichtet werden. Die individuell verknüpfbaren Erhebungen der KiGGS-Kohorte bieten zusätzlich die Möglichkeit für vertiefende Analysen von Entwicklungsverläufen der körperlichen und psychischen Gesundheit und deren Schutz- und Risikofaktoren von der Kindheit bis ins junge Erwachsenenalter. Mit der KiGGS Welle 2 erweitern sich die Datenressourcen zur Einschätzung der gesundheitlichen Situation in der Gruppe der Kinder und Jugendlichen in Deutschland für die Gesundheitsberichterstattung, Politikplanung und Forschung
    corecore