111 research outputs found

    In Vitro studies on the regulation of erythropoiesis by erythropoietin and stem cell factor

    Get PDF
    In this thesis we set out to unravel the components of the EpoR/c-Kit signalling complex to gain insight into the intracellular proteins involved in Epo and SCF regulated differentiation, survival and expansion. At present the proteins responsible for these processes are poorly described though recent data indicates that PI3K dependent signal transduction drives the expansion of erythroid progenitors. Absence of these signals results in accelerated differentiation. The signal transducing mediators downstream of PI3K may thus be part of an important switch, responsible for the regulation of the amounts of erythrocytes produced. Due to their described role in signal amplification and mitogenic signalling we focussed on PI3K regulated Tee-family kinases and docking molecules activated by SCF and/or Ep

    Erythropoiesis and Megakaryopoiesis in a Dish

    Get PDF
    Erythrocytes and platelets are the major cellular components of blood. Several hereditary diseases affect the production/stability of red blood cells (RBCs) and platelets (Plts) resulting in anemia or bleeding, respectively. Patients with such disorders may require recurrent transfusions, which bear a risk to develop alloantibodies and ultimately may result in transfusion product refractoriness. Cell culture models enable to unravel disease mechanisms, and to screen for alternative therapeutic products. Besides these applications, the ultimate goal is the large-scale production of blood effector cells for transfusion. Cultured RBCs that lack many of the common blood group antigens and Plts-lacking HLA expression would improve transfusion practice. Large numbers of RBCs and Plts can already be generated using hematopoietic stem cells derived from fetal liver, cord blood, peripheral blood, and bone marrow as starting material for cell culture. The recent advances to generate blood cells from induced pluripotent stem cells provide a donor-independent, immortal primary source for cell culture models. This enables us to study developmental switches during erythropoiesis/megakaryopoiesis and provides potential future therapeutic applications. In this review, we will discuss how erythropoiesis and megakaryopoiesis are mimicked in culture systems and how these models relate to the in vivo process

    The Shape Shifting Story of Reticulocyte Maturation

    Get PDF
    The final steps of erythropoiesis involve unique cellular processes including enucleation and reorganization of membrane proteins and the cytoskeleton to produce biconcave erythrocytes. Surprisingly this process is still poorly understood. In vitro erythropoiesis protocols currently produce reticulocytes rather than biconcave erythrocytes. In addition, immortalized lines and iPSC-derived erythroid cell suffer from low enucleation and suboptimal final maturation potential. In light of the increasing prospect to use in vitro produced erythrocytes as (personalized) transfusion products or as therapeutic delivery agents, the mechanisms driving this last step of erythropoiesis are in dire need of resolving. Here we review the elusive last steps of reticulocyte maturation with an emphasis on protein sorting during the defining steps of reticulocyte formation during enucleation and maturation

    Stem cell factor induces phosphatidylinositol 3'-kinase-dependent Lyn/Tec/Dok-1 complex formation in hematopoietic cells

    Get PDF
    Stem cell factor (SCF) has an important role in the proliferation, differentiation, survival, and migration of hematopoietic cells. SCF exerts its effects by binding to cKit, a receptor with intrinsic tyrosine kinase activity. Activation of phosphatidylinositol 3'-kinase (PI3-K) by cKit was previously shown to contribute to many SCF-induced cellular responses. Therefore, PI3-K-dependent signaling pathways activated by SCF were investigated. The PI3-K-dependent activation and phosphorylation of the tyrosine kinase Tec and the adapter molecule p62Dok-1 are reported. The study shows that Tec and Dok-1 form a stable complex with Lyn and 2 unidentified phosphoproteins of 56 and 140 kd. Both the Tec homology and the SH2 domain of Tec were identified as being required for the interaction with Dok-1, whereas 2 domains in Dok-1 appeared to mediate the association with Tec. In addition, Tec and Lyn were shown to phosphorylate Dok-1, whereas phosphorylated Dok-1 was demonstrated to bind to the SH2 domains of several signaling molecules activated by SCF, including Abl, CrkL, SHIP, and PLCgamma-1, but not those of Vav and Shc. These findings suggest that p62Dok-1 may function as an important scaffold molecule in cKit-mediated signaling

    Differential Proteomic Analysis of Human Erythroblasts Undergoing Apoptosis Induced by Epo-Withdrawal

    Get PDF
    The availability of Erythropoietin (Epo) is essential for the survival of erythroid progenitors. Here we study the effects of Epo removal on primary human erythroblasts grown from peripheral blood CD34+ cells. The erythroblasts died rapidly from apoptosis, even in the presence of SCF, and within 24 hours of Epo withdrawal 60% of the cells were Annexin V positive. Other classical hallmarks of apoptosis were also observed, including cytochrome c release into the cytosol, loss of mitochondrial membrane potential, Bax translocation to the mitochondria and caspase activation. We adopted a 2D DIGE approach to compare the proteomes of erythroblasts maintained for 12 hours in the presence or absence of Epo. Proteomic comparisons demonstrated significant and reproducible alterations in the abundance of proteins between the two growth conditions, with 18 and 31 proteins exhibiting altered abundance in presence or absence of Epo, respectively. We observed that Epo withdrawal induced the proteolysis of the multi-functional proteins Hsp90 alpha, Hsp90 beta, SET, 14-3-3 beta, 14-3-3 gamma, 14-3-3 epsilon, and RPSA, thereby targeting multiple signaling pathways and cellular processes simultaneously. We also observed that 14 proteins were differentially phosphorylated and confirmed the phosphorylation of the Hsp90 alpha and Hsp90 beta proteolytic fragments in apoptotic cells using Nano LC mass spectrometry. Our analysis of the global changes occurring in the proteome of primary human erythroblasts in response to Epo removal has increased the repertoire of proteins affected by Epo withdrawal and identified proteins whose aberrant regulation may contribute to ineffective erythropoiesis

    Glucocorticoids induce differentiation of monocytes towards macrophages that share functional and phenotypical aspects with erythroblastic island macrophages

    Get PDF
    The classical central macrophage found in erythroblastic islands plays an important role in erythroblast differentiation, proliferation and enucleation in the bone marrow. Convenient human in vitro models to facilitate the study of erythroid-macrophage interactions are desired. Recently, we demonstrated that cultured monocytes/macrophages enhance in vitro erythropoiesis by supporting hematopoietic stem and progenitor cell survival. Herein, we describe that these specific macrophages also support erythropoiesis. Human monocytes cultured in serum-free media supplemented with stem cell factor, erythropoietin, lipids and dexamethasone differentiate towards macrophages expressing CD16, CD163, CD169, CD206, CXCR4 and the phagocytic TAM-receptor family. Phenotypically, they resemble both human bone marrow and fetal liver resident macrophages. This differentiation is dependent on glucocorticoid receptor activation. Proteomic studies confirm that glucocorticoid receptor activation differentiates monocytes to anti-inflammatory tissue macrophages with a M2 phenotype, termed GC-macrophages. Proteins involved in migration, tissue residence and signal transduction/receptor activity are upregulated whilst lysosome and hydrolase activity GO-categories are downregulated. Functionally, we demonstrate that GC-macrophages are highly mobile and can interact to form clusters with erythroid cells of all differentiation stages and phagocytose the expelled nuclei, recapitulating aspects of erythroblastic islands. In conclusion, glucocorticoid-directed monocyte differentiation to macrophages represents a convenient model system to study erythroid-macrophage interactions

    In Vitro Erythropoiesis at Different pO2 Induces Adaptations That Are Independent of Prior Systemic Exposure to Hypoxia

    Get PDF
    Hypoxia is associated with increased erythropoietin (EPO) release to drive erythropoiesis. At high altitude, EPO levels first increase and then decrease, although erythropoiesis remains elevated at a stable level. The roles of hypoxia and related EPO adjustments are not fully understood, which has contributed to the formulation of the theory of neocytolysis. We aimed to evaluate the role of oxygen exclusively on erythropoiesis, comparing in vitro erythroid differentiation performed at atmospheric oxygen, a lower oxygen concentration (three percent oxygen) and with cultures of erythroid precursors isolated from peripheral blood after a 19-day sojourn at high altitude (3450 m). Results highlight an accelerated erythroid maturation at low oxygen and more concave morphology of reticulocytes. No differences in deformability were observed in the formed reticulocytes in the tested conditions. Moreover, hematopoietic stem and progenitor cells isolated from blood affected by hypoxia at high altitude did not result in different erythroid development, suggesting no retention of a high-altitude signature but rather an immediate adaptation to oxygen concentration. This adaptation was observed during in vitro erythropoiesis at three percent oxygen by a significantly increased glycolytic metabolic profile. These hypoxia-induced effects on in vitro erythropoiesis fail to provide an intrinsic explanation of the concept of neocytolysis

    In Vitro Erythropoiesis at Different pO2 Induces Adaptations That Are Independent of Prior Systemic Exposure to Hypoxia

    Full text link
    Hypoxia is associated with increased erythropoietin (EPO) release to drive erythropoiesis. At high altitude, EPO levels first increase and then decrease, although erythropoiesis remains elevated at a stable level. The roles of hypoxia and related EPO adjustments are not fully understood, which has contributed to the formulation of the theory of neocytolysis. We aimed to evaluate the role of oxygen exclusively on erythropoiesis, comparing in vitro erythroid differentiation performed at atmospheric oxygen, a lower oxygen concentration (three percent oxygen) and with cultures of erythroid precursors isolated from peripheral blood after a 19-day sojourn at high altitude (3450 m). Results highlight an accelerated erythroid maturation at low oxygen and more concave morphology of reticulocytes. No differences in deformability were observed in the formed reticulocytes in the tested conditions. Moreover, hematopoietic stem and progenitor cells isolated from blood affected by hypoxia at high altitude did not result in different erythroid development, suggesting no retention of a high-altitude signature but rather an immediate adaptation to oxygen concentration. This adaptation was observed during in vitro erythropoiesis at three percent oxygen by a significantly increased glycolytic metabolic profile. These hypoxia-induced effects on in vitro erythropoiesis fail to provide an intrinsic explanation of the concept of neocytolysis
    • …
    corecore