12 research outputs found

    Behavior of S, SO, and SO3 on Pt (001), (011), and (111) surfaces: A DFT study

    Get PDF
    In the hybrid sulfur (HyS) cycle, the reaction between SO2 and H2O is manipulated to produce hydrogen with water and sulfuric acid as by-products. However, sulfur poisoning of the catalyst has been widely reported to occur in this cycle, which is due to strong chemisorption of sulfur on the metal surface. The catalysts may deactivate as a result of these impurities present in the reactants or incorporated in the catalyst during its preparation and operation of the HyS cycle. Here, we report a density functional theory investigation of the interaction between S, SO, and SO3 with the Pt (001), (011), and (111) surfaces. First, we have investigated the adsorption of single gas phase molecules on the three Pt surfaces. During adsorption, the 4F hollow sites on the (001) and (011) surfaces and the fcc hollow site on the (111) surface were preferred. S adsorption followed the trend of (001)4F > (011)4F > (111)fcc, while SO adsorption showed (001)4F > (011)bridge/4F > (111)fcc and SO3 adsorption was most stable in a S,O,O bound configuration on the (001)4F > (011)4F > (111)fcc sites. The surface coverage was increased on all the surfaces until a monolayer was obtained. The highest surface coverage for S shows the trend (001)S = (111)S > (011)S, and for SO it is (001)SO > (011)SO > (111)SO, similar to SO3 where we found (001)SO3 > (011)SO3 > (111)SO3. These trends indicate that the (001) surface is more susceptible to S species poisoning. It is also evident that both the (001) and (111) surfaces were reactive toward S, leading to the formation of S2. The high coverage of SO3 showed the formation of SO2 and SO4, especially on the (011) surface. The thermodynamics indicated that an increased temperature of up to 2000 K resulted in Pt surfaces fully covered with elemental S. The SO coverage showed θ ≥ 1.00 on both the (001) and (011) surfaces and θ = 0.78 for the (111) surface in the experimental region where the HyS cycle is operated. Lower coverages of SO3 were observed due to the size of the molecule

    Interaction of SO2 with the Platinum (001), (011), and (111) Surfaces: A DFT Study

    Get PDF
    Given the importance of SO2 as a pollutant species in the environment and its role in the hybrid sulphur (HyS) cycle for hydrogen production, we carried out a density functional theory study of its interaction with the Pt (001), (011), and (111) surfaces. First, we investigated the adsorption of a single SO2 molecule on the three Pt surfaces. On both the (001) and (111) surfaces, the SO2 had a S,O-bonded geometry, while on the (011) surface, it had a co-pyramidal and bridge geometry. The largest adsorption energy was obtained on the (001) surface (Eads = −2.47 eV), followed by the (011) surface (Eads = −2.39 and −2.28 eV for co-pyramidal and bridge geometries, respectively) and the (111) surface (Eads = −1.85 eV). When the surface coverage was increased up to a monolayer, we noted an increase of Eads/SO2 for all the surfaces, but the (001) surface remained the most favourable overall for SO2 adsorption. On the (111) surface, we found that when the surface coverage was θ > 0.78, two neighbouring SO2 molecules reacted to form SO and SO3. Considering the experimental conditions, we observed that the highest coverage in terms of the number of SO2 molecules per metal surface area was (111) > (001) > (011). As expected, when the temperature increased, the surface coverage decreased on all the surfaces, and gradual desorption of SO2 would occur above 500 K. Total desorption occurred at temperatures higher than 700 K for the (011) and (111) surfaces. It was seen that at 0 and 800 K, only the (001) and (111) surfaces were expressed in the morphology, but at 298 and 400 K, the (011) surface was present as well. Taking into account these data and those from a previous paper on water adsorption on Pt, it was evident that at temperatures between 400 and 450 K, where the HyS cycle operates, most of the water would desorb from the surface, thereby increasing the SO2 concentration, which in turn may lead to sulphur poisoning of the catalyst

    Interaction of H2O with the Platinum Pt (001), (011), and (111) Surfaces: A Density Functional Theory Study with Long-Range Dispersion Corrections

    Get PDF
    Platinum is a noble metal that is widely used for the electrocatalytic production of hydrogen, but the surface reactivity of platinum toward water is not yet fully understood, even though the effect of water adsorption on the surface free energy of Pt is important in the interpretation of the morphology and catalytic properties of this metal. In this study, we have carried out density functional theory calculations with long-range dispersion corrections [DFT-D3-(BJ)] to investigate the interaction of H2O with the Pt (001), (011), and (111) surfaces. During the adsorption of a single H2O molecule on various Pt surfaces, it was found that the lowest adsorption energy (Eads) was obtained for the dissociative adsorption of H2O on the (001) surface, followed by the (011) and (111) surfaces. When the surface coverage was increased up to a monolayer, we noted an increase in Eads/H2O with increasing coverage for the (001) surface, while for the (011) and (111) surfaces, Eads/H2O decreased. Considering experimental conditions, we observed that the highest coverage was obtained on the (011) surface, followed by the (111) and (001) surfaces. However, with an increase in temperature, the surface coverage decreased on all the surfaces. Total desorption occurred at temperatures higher than 400 K for the (011) and (111) surfaces, but above 850 K for the (001) surface. From the morphology analysis of the Pt nanoparticle, we noted that, when the temperature increased, only the electrocatalytically active (111) surface remained

    Competitive Adsorption of H2O and SO2 on Catalytic Platinum Surfaces: a Density Functional Theory Study

    Get PDF
    Platinum has been widely used as the catalyst of choice for the production of hydrogen in the hybrid sulphur (HyS) cycle. In this cycle, water (H2O) and sulphur dioxide (SO2) react to form sulphuric acid and hydrogen. However, the surface reactivity of platinum towards H2O and SO2 is not yet fully understood, especially considering the competitive adsorption that may occur on the surface. In this study, we have carried out density functional theory calculations with long-range dispersion corrections [DFT-D3-(BJ)] to investigate the competitive effect of both H2O and SO2 on the Pt (001), (011) and (111) surfaces. Comparing the adsorption of a single H2O molecule on the various Pt surfaces, it was found that the lowest adsorption energy (Eads = -1.758 eV) was obtained for the dissociative adsorption of H2O on the (001) surface, followed by the molecular adsorption on the (011) surface (Eads = -0.699 eV) and (111) surface (Eads = -0.464 eV). For the molecular SO2 adsorption, the trend was similar, with the lowest adsorption energy (Eads = -2.471 eV) obtained on the (001) surface, followed by the (011) surface (Eads = -2.390 eV) and (111) surface (Eads = -1.852 eV). During competitive adsorption by H2O and SO2, the SO2 molecule will therefore preferentially adsorb onto the Pt surface. If the concentration of SO2 increases, self-reaction between two neighbouring SO2 molecules may occur, leading to the formation of sulphur monoxide (SO) and -trioxide (SO3) on the surface, which could lead to sulphur poisoning of the Pt catalytic surface

    Mixing thermodynamics and electronic structure of the Pt1−xNix (0 ≤ x ≤ 1) bimetallic alloy

    Get PDF
    The development of affordable bifunctional platinum alloys as electrode materials for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) remains one of the biggest challenges for the transition towards renewable energy sources. Yet, there is very little information on the optimal ratio between platinum and the transition metal used in the alloy and its impact on the electronic properties. Here, we have employed spin-polarised density functional simulations with long-range dispersion corrections [DFT–D3–(BJ)], to investigate the thermodynamics of mixing, as well as the electronic and magnetic properties of the Pt1−xNix solid solution. The Ni incorporation is an exothermic process and the alloy composition Pt0.5Ni0.5 is the most thermodynamically stable. The Pt0.5Ni0.5 solid solution is highly ordered as it is composed mainly of two symmetrically inequivalent configurations of homogeneously distributed atoms. We have obtained the atomic projections of the electronic density of states and band structure, showing that the Pt0.5Ni0.5 alloy has metallic character. The suitable electronic properties of the thermodynamically stable Pt0.5Ni0.5 solid solution shows promise as a sustainable catalyst for future regenerative fuel cells

    Thermodynamics of the Atomic Distribution in Pt3Pd2, Pt2Pd3 and their Corresponding (111) Surfaces

    Get PDF
    In this study, we have developed solid-state models of platinum and palladium bimetallic catalysts, Pt3Pd2 and Pt2Pd3, which are rapidly thermally annealed at 800 °C. These models were constructed by determining all the unique atomic configurations in a 2x2x1 supercell, using the program Site-Occupation Disorder (SOD), and optimized with the General Utility Lattice Program (GULP) using Sutton-Chen interatomic potentials. Each catalyst had 101 unique bulk models that were developed into surface models, which were constructed using the two-region surface technique before the surface energies were determined. The planes and compositions with lowest surface energies were chosen as the representative models for the surface structure of the bimetallic catalysts. These representative models will now be used in a computational study of the HyS process for the production of hydrogen

    Binary mixtures of polyethylene and oxidized wax: Dependency of thermal and mechanical properties upon mixing procedure

    No full text
    The influence of the preparation procedure on the thermal and mechanical properties of linear low-density polyethylene (LLDPE)- and LDPE-oxidized wax blends was investigated. It was found that mechanically mixed blends show reduced thermal stability as well as ultimate mechanical properties (stress and strain at break) compared to that of extrusion mixed blends. However, the structure of the blend and consequently its thermal and mechanical behavior also depend on the initial morphology of polyethylene. DSC measurements show miscibility up to high wax contents in both blend types, but increasing the amount of wax in LDPE blends induces increasing crystallinity. As a result, the LDPE/wax blends show improved thermal stability of between 20 and 50degreesC at low wax concentrations. Although the elasticity modulus of the blends increases, increasing the amount of wax generally degrades the mechanical properties. The main reason for this is the reduced number of tie chains. Changes in the average concentration of tie chains with increasing wax content were calculated and a correlation was made with the ultimate properties of the blends. (C) 2003 Wiley Periodicals, Inc

    Fabrication and characterization of silver-polyvinyl alcohol nanocomposites

    No full text
    The influence of silver (Ag) nanoparticles on the properties of poly(vinyl alcohol) (PVA) was investigated. The nanocomposite was prepared by mixing a colloidal solution consisting of silver nanoparticles with a water solution of PVA in appropriate ratios. Composite films with different contents of inorganic phase were obtained after solvent evaporation. The contents of the inorganic phase in the nanocomposites were determined by using atomic absorption spectroscopy (AA) for silver, and were found to be 0.19, 0.33, and 0.73 wt %. Transmission electron microscopy (TEM) of the nanocomposite films revealed the presence of Ag particles with average diameter of 20 nm. Comparison of the thermal properties of the pure polymer and the nanocomposite films showed that the thermal stability is improved by about 40 degreesC, and the glass transition temperature is shifted to a higher temperature up to 20 degreesC for the highest content of the nanofiller. An increase in Youngs modulus and strength of the nanocomposite was also observed with an increase in Ag content, indicating significant reinforcement of the matrix in the presence of nanoparticles. Stress relaxation measurements revealed reduced stability of the nanocomposite upon prolonged loading, compared to the pure PVA matrix

    Synthesis, structural characterization and <i>cis-trans</i> isomerization of novel (salicylaldiminato)platinum(II) complexes

    No full text
    Please help populate SUNScholar with the full text of SU research output. Also - should you need this item urgently, please send us the details and we will try to get hold of the full text as quick possible. E-mail to [email protected]. Thank you.Journal Articles (subsidised)NatuurwetenskappeChemie & Polimeerwetenska
    corecore