46 research outputs found

    Pectin methylesterification modulates cell wall properties to promote neighbour proximity-induced hypocotyl growth

    Get PDF
    Plants growing with neighbors compete for light and consequently increase the growth of their vegetative organs to enhance access to sunlight. This response, called shade avoidance syndrome (SAS), involves photoreceptors such as phytochromes as well as phytochrome interacting factors (PIFs), which regulate the expression of growth-mediating genes. Numerous cell wall-related genes belong to the putative targets of PIFs, and the importance of cell wall modifications for enabling growth was extensively shown in developmental models such as dark-grown hypocotyl. However, the contribution of the cell wall in the growth of de-etiolated seedlings regulated by shade cues remains poorly established. Through analyses of mechanical and biochemical properties of the cell wall coupled with transcriptomic analysis of cell wall-related genes from previously published data, we provide evidence suggesting that cell wall modifications are important for neighbor proximity-induced elongation. Further analysis using loss-of-function mutants impaired in the synthesis and remodeling of the main cell wall polymers corroborated this. We focused on the cgr2cgr3 double mutant that is defective in methylesterification of homogalacturonan (HG)-type pectins. By following hypocotyl growth kinetically and spatially and analyzing the mechanical and biochemical properties of cell walls, we found that methylesterification of HG-type pectins was required to enable global cell wall modifications underlying neighbor proximity-induced hypocotyl growth. Collectively, our work suggests that plant competition for light induces changes in the expression of numerous cell wall genes to enable modifications in biochemical and mechanical properties of cell walls that contribute to neighbor proximity-induced growth

    Pectin methylesterification state and cell wall mechanical properties contribute to neighbor proximity-induced hypocotyl growth in Arabidopsis

    Get PDF
    Plants growing with neighbors compete for light and consequently increase the growth of their vegetative organs to enhance access to sunlight. This response, called shade avoidance syndrome (SAS), involves photoreceptors such as phytochromes as well as phytochrome interacting factors (PIFs), which regulate the expression of growth-mediating genes. Numerous cell wall-related genes belong to the putative targets of PIFs, and the importance of cell wall modifications for enabling growth was extensively shown in developmental models such as dark-grown hypocotyl. However, the contribution of the cell wall in the growth of de-etiolated seedlings regulated by shade cues remains poorly established. Through analyses of mechanical and biochemical properties of the cell wall coupled with transcriptomic analysis of cell wall-related genes from previously published data, we provide evidence suggesting that cell wall modifications are important for neighbor proximity-induced elongation. Further analysis using loss-of-function mutants impaired in the synthesis and remodeling of the main cell wall polymers corroborated this. We focused on the double mutant that is defective in methylesterification of homogalacturonan (HG)-type pectins. By following hypocotyl growth kinetically and spatially and analyzing the mechanical and biochemical properties of cell walls, we found that methylesterification of HG-type pectins was required to enable global cell wall modifications underlying neighbor proximity-induced hypocotyl growth. Collectively, our work suggests that plant competition for light induces changes in the expression of numerous cell wall genes to enable modifications in biochemical and mechanical properties of cell walls that contribute to neighbor proximity-induced growth

    Donor-Derived Cell-Free DNA for the Detection of Heart Allograft Injury:The Impact of the Timing of the Liquid Biopsy

    Get PDF
    Background: In heart transplant recipients, donor-derived cell-free DNA (ddcfDNA) is a potential biomarker for acute rejection (AR), in that increased values may indicate rejection. For the assessment of ddcfDNA as new biomarker for rejection, blood plasma sampling around the endomyocardial biopsy (EMB) seems a practical approach. To evaluate the effect of the EMB procedure on ddcfDNA values, ddcfDNA values before the EMB were pairwise compared to ddcfDNA values after the EMB. We aimed at evaluating whether it matters whether the ddcfDNA sampling is done before or after the EMB-procedure. Methods: Plasma samples from heart transplant recipients were obtained pre-EMB and post-EMB. A droplet digital PCR method was used for measuring ddcfDNA, making use of single-nucleotide polymorphisms that allowed both relative quantification, as well as absolute quantification of ddcfDNA. Results: Pairwise comparison of ddcfDNA values pre-EMB with post-EMB samples (n = 113) showed significantly increased ddcfDNA concentrations and ddcfDNA% in post-EMB samples: an average 1.28-fold increase in ddcfDNA concentrations and a 1.31-fold increase in ddcfDNA% was observed (p = 0.007 and p = 0.03, respectively). Conclusion: The EMB procedure causes iatrogenic injury to the allograft that results in an increase in ddcfDNA% and ddcfDNA concentrations. For the assessment of ddcfDNA as marker for AR, collection of plasma samples before the EMB procedure is therefore essential

    Clinical Utility of Circulating Tumor DNA in Patients With Advanced KRAS<sup>G12C</sup>-Mutated NSCLC Treated With Sotorasib

    Get PDF
    Introduction: For patients with KRASG12C-mutated NSCLC who are treated with sotorasib, there is a lack of biomarkers to guide treatment decisions. We therefore investigated the clinical utility of pretreatment and on-treatment circulating tumor DNA (ctDNA) and treatment-emergent alterations on disease progression. Methods: Patients with KRASG12C-mutated NSCLC treated with sotorasib were prospectively enrolled in our biomarker study (NCT05221372). Plasma samples were collected before sotorasib treatment, at first-response evaluation and at disease progression. The TruSight Oncology 500 panel was used for ctDNA and variant allele frequency analysis. Tumor response and progression-free survival were assessed per Response Evaluation Criteria in Solid Tumors version 1.1. Results: Pretreatment KRASG12C ctDNA was detected in 50 of 66 patients (76%). Patients with detectable KRASG12C had inferior progression-free survival (hazard ratio [HR] 2.13 [95% confidence interval [CI]: 1.06–4.30], p = 0.031) and overall survival (HR 2.61 [95% CI: 1.16–5.91], p = 0.017). At first-response evaluation (n = 40), 29 patients (73%) had a molecular response. Molecular nonresponders had inferior overall survival (HR 3.58 [95% CI: 1.65–7.74], p = 0.00059). The disease control rate was significantly higher in those with a molecular response (97% versus 64%, p = 0.015). KRAS amplifications were identified as recurrent treatment-emergent alterations. Conclusions: Our data suggest detectable pretreatment KRASG12C ctDNA as a marker for poor prognosis and on-treatment ctDNA clearance as a marker for treatment response. We identified KRAS amplifications as a potential recurring resistance mechanism to sotorasib. Identifying patients with superior prognosis could aid in optimizing time of treatment initiation, and identifying patients at risk of early progression could allow for earlier treatment decisions.</p

    Plasma Cell-Free DNA Testing of Patients With EGFR Mutant Non-Small-Cell Lung Cancer: Droplet Digital PCR Versus Next-Generation Sequencing Compared With Tissue-Based Results

    Get PDF
    PURPOSE To compare the results of plasma cell-free DNA (cfDNA) droplet digital PCR (ddPCR) and nextgeneration sequencing (NGS) on detection of epidermal growth factor receptor (EGFR) primary activating mutations and p.T790M with results of tissue analysis in patients with EGFR mutated non–small-cell lun

    A common germline variant in CYP11B1 is associated with adverse clinical outcome of treatment with abiraterone or enzalutamide

    Get PDF
    Extragonadal androgens play a pivotal role in prostate cancer disease progression on androgen receptor signaling inhibitors (ARSi), including abiraterone and enzalutamide. We aimed to investigate if germline variants in genes involved in extragonadal androgen synthesis contribute to resistance to ARSi and may predict clinical outcomes on ARSi. We included ARSi naive metastatic prostate cancer patients treated with abiraterone or enzalutamide and determined 18 germline variants in six genes involved in extragonadal androgen synthesis. Variants were tested in univariate and multivariable analysis for the relation with overall survival (OS) and time to progression (TTP) by Cox regression, and PSA response by logistic regression. A total of 275 patients were included. From the investigated genes CYP17A1, HSD3B1, CYP11B1, AKR1C3, SRD5A1 and SRD5A2, only rs4736349 in CYP11B1 in homozygous form (TT), present in 54 patients (20%), was related with a significantly worse OS (HR = 1.71, 95% CI 1.09 – 2.68, p = 0.019) and TTP (HR = 1.50, 95% CI 1.08 – 2.09, p = 0.016), and was related with a significantly less frequent PSA response (OR = 0.48, 95% CI 0.24 – 0.96, p = 0.038) on abiraterone or enzalutamide in a multivariable analysis. The frequent germline variant rs4736349 in CYP11B1 is, as homozygote, an independent negative prognostic factor for treatment with abiraterone or enzalutamide in ARSi naive metastatic prostate cancer patients. Our findings warrant prospective investigation of this potentially important predictive biomarker

    Influence of germline variations in drug transporters ABCB1 and ABCG2 on intracerebral osimertinib efficacy in patients with non-small cell lung cancer

    Get PDF
    BACKGROUND: Central nervous system (CNS) metastases are present in approximately 40% of patients with metastatic epidermal growth factor receptor-mutated ( EGFRm+) non-small cell lung cancer (NSCLC). The EGFR-tyrosine kinase inhibitor osimertinib is a substrate of transporters ABCB1 and ABCG2 and metabolized by CYP3A4. We investigated relationships between single nucleotide polymorphisms (SNPs) ABCB1 3435C>T, ABCG2 421C>A and 34G>A, and CYP3A4∗22 and CNS treatment efficacy of osimertinib in EGFRm+ NSCLC patients. METHODS: Patients who started treatment with osimertinib for EGFRm+ NSCLC between November 2014 and June 2021 were included in this retrospective observational multicentre cohort study. For patients with baseline CNS metastases, the primary endpoint was CNS progression-free survival (CNS-PFS; time from osimertinib start until CNS disease progression or death). For patients with no or unknown baseline CNS metastases, the primary endpoint was CNS disease-free survival (CNS-DFS; time from osimertinib start until occurrence of new CNS metastases). Relationships between SNPs and baseline characteristics with CNS-PFS and CNS-DFS were studied with competing-risks survival analysis. Secondary endpoints were relationships between SNPs and PFS, overall survival, severe toxicity, and osimertinib pharmacokinetics. FINDINGS: From 572 included patients, 201 had baseline CNS metastases. No SNP was associated with CNS-PFS. Genotype ABCG2 34GA/AA and/or ABCB1 3435CC --present in 35% of patients-- was significantly associated with decreased CNS-DFS (hazard ratio 0.28; 95% CI 0.11-0.73; p = 0.009) in the multivariate analysis. This remained significant after applying a Bonferroni correction and internal validation through bootstrapping. ABCG2 421CA/AA was related to more severe toxicity (27.0% versus 16.5%; p = 0.010). INTERPRETATION: ABCG2 34G>A and ABCB1 3435C>T are predictors for developing new CNS metastases during osimertinib treatment, probably because of diminished drug levels in the CNS. ABCG2 421C>A was significantly related with the incidence of severe toxicity. Pre-emptive genotyping for these SNPs could individualize osimertinib therapy. Addition of ABCG2 inhibitors for patients without ABCG2 34G>A should be studied further, to prevent new CNS metastases during osimertinib treatment. FUNDING: No funding was received for this trial

    Pectin methylesterification state and cell wall mechanical properties contribute to neighbor proximity-induced hypocotyl growth in Arabidopsis.

    Get PDF
    Plants growing with neighbors compete for light and consequently increase the growth of their vegetative organs to enhance access to sunlight. This response, called shade avoidance syndrome (SAS), involves photoreceptors such as phytochromes as well as phytochrome interacting factors (PIFs), which regulate the expression of growth-mediating genes. Numerous cell wall-related genes belong to the putative targets of PIFs, and the importance of cell wall modifications for enabling growth was extensively shown in developmental models such as dark-grown hypocotyl. However, the contribution of the cell wall in the growth of de-etiolated seedlings regulated by shade cues remains poorly established. Through analyses of mechanical and biochemical properties of the cell wall coupled with transcriptomic analysis of cell wall-related genes from previously published data, we provide evidence suggesting that cell wall modifications are important for neighbor proximity-induced elongation. Further analysis using loss-of-function mutants impaired in the synthesis and remodeling of the main cell wall polymers corroborated this. We focused on the cgr2cgr3 double mutant that is defective in methylesterification of homogalacturonan (HG)-type pectins. By following hypocotyl growth kinetically and spatially and analyzing the mechanical and biochemical properties of cell walls, we found that methylesterification of HG-type pectins was required to enable global cell wall modifications underlying neighbor proximity-induced hypocotyl growth. Collectively, our work suggests that plant competition for light induces changes in the expression of numerous cell wall genes to enable modifications in biochemical and mechanical properties of cell walls that contribute to neighbor proximity-induced growth

    Utilisation et possibilités de méthodes dites -omiques en viticulture

    No full text
    National audienc
    corecore