
original
report

Plasma Cell-Free DNA Testing of Patients With
EGFR Mutant Non–Small-Cell Lung Cancer:
Droplet Digital PCR Versus Next-Generation
Sequencing Compared With
Tissue-Based Results
Christi M.J. Steendam, MD1,2; Peggy Atmodimedjo1; Evert de Jonge1; Marthe S. Paats, MD, PhD1; Cor van der Leest, MD, PhD2;
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abstract

PURPOSE To compare the results of plasma cell-free DNA (cfDNA) droplet digital PCR (ddPCR) and next-
generation sequencing (NGS) on detection of epidermal growth factor receptor (EGFR) primary activating
mutations and p.T790M with results of tissue analysis in patients with EGFR mutated non–small-cell lung
cancer.

METHODS All patients with EGFR mutated non–small cell lung cancer for which a pathology and a plasma
specimen were available upon progression between November 2016 and July 2018 were selected. Concor-
dance, Cohen’s κ, and intraclass correlation coefficients were calculated.

RESULTS Plasma cfDNA and pathology specimens of 36 patients were analyzed. Agreement between ddPCR
and NGS was 86% (κ = 0.63) for the primary activating mutation and 94% (κ = 0.89) for the p.T790M detection.
Allele ratios were comparable, with an intraclass correlation coefficient of 0.992 and 0.997, respectively.
Discrepancies of some degree were found in 15 patients (41.7%). In six patients (16.7%), no mutations were
detected in cfDNA. In three patients (8.3%), p.T790M was detected in plasma but not in the pathology
specimen, whereas in three other patients (8.3%), p.T790M was demonstrated in the pathology specimen but
not in plasma. Concordance of cfDNA and pathology for the primary activatingmutation was 69% for ddPCR and
83% for NGS. For the detection of p.T790M, this was 75% (κ = 0.49) for ddPCR as well as for NGS.

CONCLUSION Mutual agreement is high between NGS and ddPCR in cfDNA on the level of a specific mutation,
with comparable ratio results. Plasma testing of EGFR primary activating mutations and p.T790M shows high
concordance with pathology results, for NGS as well as for ddPCR, depending on the extent of the panel used. In
NGS, more genetic aberrations can be investigated at once.
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INTRODUCTION

Among cancer deaths worldwide, non–small-cell
lung cancer (NSCLC) is the leading cause.1 The
survival of metastasized disease is poor as illustrated
by a 1-year survival rate of 23% in the Netherlands
between 2010 and 2015.2 The choice of palliative
systemic treatment currently depends on histologic
subtype, programmed cell death ligand 1 (PD-L1)
expression, and the presence of specific genetic
aberrations (also known as driver mutations) for
which specific targeted therapies are available.3

Today, for nonsquamous NSCLC, it is common
practice to perform molecular analysis on a tissue
biopsy specimen at the time of diagnosis.3

Targeted therapies have been developed and regis-
tered for treating NSCLC on the basis of the presence
of genetic alterations in an expanding number of
genes. The most common examples are activating
mutations in the genes for epidermal growth factor
receptor (EGFR) and B-raf proto-oncogene (BRAF)
and translocations of the anaplastic lymphoma kinase
and ROS proto-oncogene 1 genes.4

The population with EGFRmutated NSCLC is the most
comprehensive of these patient groups, with an in-
cidence of at least 10% in the white and up to 35% in
the Asian population.5 Clinical trials have shown high
response rates (approximately 70%) and prolonged
progression-free survival (PFS) rates up to 1 year on
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average to first-generation tyrosine kinase inhibitors
(TKIs).6 All patients, however, ultimately develop resistance
to treatment with TKIs and show progression of disease at
some point. There are two main mechanisms of acquired
resistance: Pharmacologic (eg, problems with compliance,
dose reductions, reduced absorption or increased meta-
bolism, inadequate CNS penetration) and biologic (eg,
altered drug target, bypass tracks, phenotypic change,
downstream signaling pathways).7

The gatekeeper mutation p.T790M in EGFR exon 20 is the
most common resistancemechanism to first- and second-
generation TKIs (erlotinib, gefitinib, and afatinib) in
NSCLC with an activating EGFR mutation and occurs in
more than 50% of patients.7 Because the availability of
osimertinib, a drug that overcomes the p.T790M re-
sistance mechanism that shows high response rates and
a substantial median PFS of 8 months, the detection of
this gatekeeper mutation has been of utmost importance.8,9

In addition, there are other known resistance mecha-
nisms for which targeted therapies are available in re-
search or off-label settings. Therefore, it is strongly
advised to obtain a new molecular analysis at the time of
progression on first-line EGFR TKIs.3

Although a tissue biopsy is still considered the gold
standard for diagnosis of NSCLC, the potential to detect
genetic aberrations in the blood, which is often referred
to as liquid biopsy, has specific advantages over a tissue
biopsy in that it is easier to obtain and has a lower patient
burden.10 Currently, the use of plasma detection of
p.T790M at the time of progression on first-line EGFR
TKIs is widely accepted, and prescription of osimertinib
is established on the basis of EGFR p.T790M detection in
plasma.11,12

Several mutation detection techniques are under in-
vestigation for application in clinical practice in which a very
low detection limit is essential because the amount of
circulating cell-free tumor DNA (ctDNA) in the total of cell-
free DNA (cfDNA) can be very low. Traditional polymerase

chain reaction (PCR) is not sensitive enough to detect these
low amounts of tumor DNA. Real-time PCR slightly im-
proves the detection limit (eg, Cobas [Roche, Basel,
Switzerland], Therascreen [QIAGEN, Valencia, CA]), but
a major improvement in sensitivity was achieved by the
development of digital platforms that target specific mu-
tations like droplet digital PCR (ddPCR) and beads,
emulsion, amplification, and magnetics digital PCR.13 This
requires a modest amount of time and cfDNA to obtain
reliable results. A more broad (untargeted) approach is
represented by next-generation sequencing (NGS). A lot of
effort was invested in optimizing NGS for use on cfDNA,
with adjusted amplicon sizes for amplification of smaller
DNA fragments and application of molecular barcodes to
recognize the needle in the haystack in low concentrations
of ctDNA in the total amount of cfDNA.14 For optimal re-
sults, it is advised to use as much cfDNA in the panel as
possible. Depending on the platform used, the lead time
requires several working days, which is comparable to NGS
on tissue specimens.

This study compares the results of ddPCR (Bio-Rad Lab-
oratories, Hercules, CA) and NGS (Ion Torrent, Thermo
Fisher Scientific, Waltham, MA) for detection of primary
activating and resistance p.T790M EGFR mutations in
plasma-derived cfDNA. Outcomes are compared with NGS
results of conventional tissue biopsy or cytology.

METHODS

We included all patients with EGFR mutated NSCLC with
progression on current therapy for which a tissue specimen
(histology/cytology) was available in the same time frame
and line of treatment as plasma analysis. The study was
conducted at Erasmus MC Cancer Institute between No-
vember 2016 and July 2018. The maximum time frame
between plasma and tissue collection was limited to
3 months.

Plasma samples were collected and cfDNA analyses per-
formed upon progression on current therapy for detection

CONTEXT

Key Objective
To compare plasma cell-free DNA mutation testing by droplet digital polymerase chain reaction (ddPCR) and next-generation

sequencing (NGS) with their concordance with tissue testing.
Knowledge Generated
ddPCR and NGS yield comparable results, with similar sensitivity for the mutations that can be detected by both methods, and

the concordance with tissue-based results is high. Discordant cases tend to show intrathoracic and/or CNS progression.
The extent of mutations that can be discovered by NGS in one step is larger.

Relevance
When searching for a resistance mechanism, NGS analysis of cell-free DNA in plasma offers a more comprehensive view than

ddPCR, with comparable precision at a single mutation level. When no mutations are detected in plasma, tissue-based
investigation remains desirable.

Steendam et al

2 © 2019 by American Society of Clinical Oncology

Downloaded from ascopubs.org by Erasmus MC - Medische Bibliotheek on July 24, 2019 from 145.005.176.008
Copyright © 2019 American Society of Clinical Oncology. All rights reserved.



of primary activating and p.T790M EGFR mutations. We
prospectively collected all data on requested plasma
analyses.

cfDNA Isolation

Blood was collected in 10-mL CellSave Preservative Tubes
(CellSearch, Menarini Silicon Biosystems, Castel Maggiore,
Italy) and centrifuged for 20 minutes at 1,600 × g. Plasma
samples were stored at −80°C until cfDNA isolation. Before
extraction, samples were centrifuged for 10 minutes at
10,000 × g. The cfDNA was extracted using the QIAmp
Circulating Nucleic Acid Kit (QIAGEN) from 3 mL of plasma
according to the manufacturer’s protocol. The DNA was
eluted in 50 μL of buffer.

ddPCR Analysis

The actual analysis of EGFR activating (exon 19 deletions
and p.L858R) and resistance (p.T790M) mutations was
performed using ddPCR mutation assays (Bio-Rad Labo-
ratories) as previously described.15

NGS on Pathology Specimens and cfDNA

DNA was isolated from formalin-fixed paraffin-embedded
tissues enriched for neoplastic cells by manual microdis-
section as previously described.16 NGS analysis was per-
formed by semiconductor sequencing with the Ion S5
System (Thermo Fisher Scientific) with the supplier’s
materials and protocols. Library preparation was performed
with 1 to 10 ng of tissue DNA and 4 to 50 ng of cfDNA,
depending on the amount of tissue or cfDNA available.
Libraries of tissue DNA were prepared with a custom-made
primer panel that encompassed, among others, EGFR
exons 18 to 21, KRAS exons 2 to 4, ERBB2 exons 19 to 21,
BRAF exons 11 and 15, and the entire coding region of
TP53 using the AmpliSeq Library Kit 2.0-384 LV (Thermo
Fisher Scientific); cfDNA library preparation was performed
using the Oncomine Lung cfDNA Assay (Thermo Fisher
Scientific). Templates were prepared using the Ion 520 &
Ion 530 Kit-Chef and sequenced with the Ion S5 Se-
quencing Kit on an Ion 530 Chip (Thermo Fisher Scientific).
Sequence data were analyzed with Variant Caller version
5.6.0.4 (Thermo Fisher Scientific). Variants detected in
tissue samples were annotated by SeqNext version 4.2.2
build 503 software (JSI Medical Systems, Kippenheim,
Germany). Results are reported as allele ratios (mutated
alleles / [mutated + wild-type alleles] × 100%) in the case of
at least three positive droplets (ddPCR) or three unique
molecules (NGS).

Statistical Analysis

Concordance of ddPCR and NGS with tissue-based results
was calculated for the primary activating mutation. Cohen’s
κ was calculated to evaluate the agreement between
ddPCR or NGS and tissue-based results for p.T790M
detection and between ddPCR and NGS on cfDNA for the
primary activating mutation as well as for p.T790M.
Intraclass correlation coefficients were calculated for the

ratios of ddPCR and NGS for p.T790M as well as for the
primary activating mutation when applicable.

RESULTS

Between November 2016 and July 2018, 162 patients
underwent cfDNA analysis on plasma collected in 10-mL
CellSave Preservative Tubes. We selected all 36 patients
with EGFR mutated NSCLC with progression on current
treatment of which a histology or cytology specimen was
available in the same time frame and line of treatment.
Baseline characteristics of the population are listed in
Table 1.

Results of Plasma Analyses

Agreement between ddPCR and NGS was 94% (κ = 0.89)
for EGFR p.T790M detection in plasma and 86% (κ = 0.63)
for detection of the primary activating EGFR mutation. The
quantification in allele ratio (mutant / [mutant + wild type])
proved highly similar for both techniques (Fig 1), with an
intraclass correlation coefficient of 0.997 and 0.992, re-
spectively. Discrepant results were found in 15 patients
(41.7%). Table 2 lists results of plasma and tissue analyses
for all patients.

In six patients (16.7%), the primary activating mutation was
a less common variant that was not present in the current
ddPCR panel. Therefore, these mutations could not be
detected in the plasma by ddPCR. In two of these patients,
the primary activating mutation also was not detected by
NGS, one of them was not present in the NGS panel. In one
other patient, the primary activating mutation was not
detected by ddPCR (although present in the panel) but was
shown in plasma by NGS detection. At the level of p.T790M
detection, better agreement was shown, with only one
patient in whom p.T790M was detected by NGS but not by
ddPCR.

Comparison With Tissue Results

For NGS, concordance for the primary activating EGFR
mutation with tissue specimens was 83% (30 of 36 con-
firmed results). For the mutations that could be detected by
the ddPCR panel (shared mutations with the cfDNA NGS
panel), 83% were confirmed. However, because of the
limitation of checking only p.L858R and exon 19 deletion,
the concordance of detection of all EGFR activating mu-
tations (also including nonshared mutations) was 69% (25
of 36) compared with NGS-obtained tissue-based results.
For EGFR p.T790M detection, both ddPCR and NGS
showed a concordance of 75% (κ = 0.49) with the tissue-
based results.

In six patients (16.7%), all with intrathoracic progression,
no mutations were detected in cfDNA (mutation-negative
plasma), whereas the tissue analysis showed the presence
of EGFR p.T790M in three (50%) of these patients. The
best response on initiated osimertinib treatment in these
three patients was partial response in one and stable
disease in two.

cfDNA in EGFR Mutated NSCLC: ddPCR v NGS Compared With Tissue
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In three patients (8.3%), cfDNA analysis detected
p.T790M, which was not demonstrated in the tissue spec-
imen (ddPCR positive in two patients, NGS positive in three

patients). In two of these patients, there was an evident
extrathoracic progression site. Upon treatment with osi-
mertinib, there was progressive disease as best response in
two of these patients (one of whomhad an additionalPIK3CA
mutation that was detected in the corresponding tumor
tissue); the other patient had already received osi-
mertinib treatment, and the additional clinical course was
unknown because treatment was coordinated in another
hospital.

In three other patients (8.3%), p.T790M was detected in
tumor tissue but not in cfDNA, whereas the primary acti-
vating EGFR mutation was detected in the plasma. These
patients all had intrathoracic progression and/or a new CNS
localization. One patient showed stable disease as best
response to osimertinib, another died before subsequent
therapy could be initiated, and the clinical course of the
third patient remained unknown because he was treated
elsewhere.

DISCUSSION

This study compared two accurate and promising tech-
niques for detection of targetable genetic aberrations in
NSCLC in the same plasma samples and confirms the high
concordance of cfDNA with tumor tissue analysis as
published earlier.13,17 We did not calculate negative pre-
dictive value or positive predictive value because we did not
consider the tissue analysis as the gold standard; it is
a known phenomenon that tumor heterogeneity might
result in a mutation-negative biopsy specimen while
amutation can be present in another (metastasized) region.
Our findings support this because three patients had
p.T790M detected in plasma but not in tissue. We do not
believe that they had false-positive findings but, rather, that
the biopsy specimen did not represent the whole spectrum
of genetic aberrations of the disease.

ddPCR is considered a highly sensitive PCR platform that,
next to high concordance with tissue-based results, also
offers high sensitivity and specificity compared with earlier
PCR assays (Taqman PCR with peptide nucleic acid;
Therascreen; Cobas; and beads, emulsion, amplification,
and magnetics digital PCR).12,18 NGS has proven its
qualities in molecular analysis of tissue and has promising
evolving capabilities for mutation analysis of cfDNA.19-21

Both techniques yield results as a percent of the total
(ratio), which is considered a benefit over methods that
merely indicate positive or negative.

The moderate agreement between cfDNA and tissue-
based results on p.T790M detection is partly the result
of mutation-negative plasma samples. The six patients
(16.7%) in whom no mutations were detected in plasma
could reflect the limited sensitivity of cfDNA analysis in
NSCLC, which was earlier reported to be approximately
60% to 80%.22,23 This is defined not only by the platform
limitations but also by the lack of shedding of tumor DNA in
the circulation in some patients (eg, the patients in our

TABLE 1. Baseline Characteristics
Characteristic Patients, No. (%)

No. of patients 36

Age, mean, years (range) 66 (45-85)

Sex

Male 12 (33.3)

Female 24 (66.7)

Smoking status

Never 15 (41.7)

Former 9 (25)

Current 3 (8.3)

Unknown 9 (25)

Pack-years

0 15 (41.7)

1-15 4 (11.1)

15-30 2 (5.6)

. 30 2 (5.6)

Unknown 13 (36)

Activating EGFR mutation

Exon 18 2 (5.6)

Exon 19 24 (66.7)

Exon 21 p.L858R 9 (25)

Exon 21 other 1 (2.8)

Lines of therapy

Mean before PA specimen (range) 1.6 (1-5)

1 25 (69.4)

2 5 (13.9)

3 3 (8.3)

4 1 (2.8)

5 2 (5.6)

Previous chemotherapy

Yes 8 (22.2)

No 28 (77.8)

Current therapy at time of PA specimen

Erlotinib 24 (66.7)

Gefitinib 4 (11.1)

Osimertinib 6 (16.7)

Chemotherapy 1 (2.8)

PD-1 inhibitor 1 (2.8)

Type of PA specimen

Histology 29 (80.6)

Cytology 7 (19.4)

Abbreviations: EGFR, epidermal growth factor receptor; PA, primary
activating; PD-1, programmed cell death 1.
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study were all found to have intrathoracic progression) and
the limitation of the volume taken for plasma analysis.24,25

If the primary activating EGFRmutation is not detectable in
the plasma and p.T790M is also not detected, the result is
not conclusive and of no clinical use for determining ad-
ditional treatment options. Therefore, tissue biopsy speci-
mens are desirable to detect the resistance mechanism in
such patients. The mutation-negative plasma subset has
a substantial negative effect on the concordance between
cfDNA and tissue biopsy results.

On the other hand, the three patients (8.3%) in whom
p.T790M was detected in cfDNA but not in tumor tissue
also contribute to the limitation of agreement. These three
patients might represent the concept of tumor heteroge-
neity, where the location of the biopsy does not represent
the full spectrum of genetic aberrations of the disease.24,26

The p.T790M-positive cells might represent a subclone of
limited extent, or another (not yet detected) alternative
resistance mechanism might be of greater influence (il-
lustrated by the patient with a PIK3CA mutation in the
pathology specimen). The patients who showed p.T790M
in tissue analysis but not in plasma all had intrathoracic
and/or CNS progression, which again supports the theory
that those sites are associated with a lesser rate of shedding
of tumor DNA into blood.25

The concordance between NGS and ddPCR in cfDNA of
a specific genetic aberration that is targetable for ddPCR,
like p.T790M, is higher than for the broader and hetero-
geneous group of activating EGFR mutations because not
all activating EGFR mutations were present in the current
ddPCR panel and, thus, will be missed. In such cases, it is
unclear whether plasma is false negative for p.T790M
because of limited sensitivity of ddPCR or true negative
because of absence of ctDNA, as the primary activating
EGFR mutation also could not be detected.

Because osimertinib showed improved PFS when used in
first-line treatment in the AZD9291 Versus Gefitinib or
Erlotinib in Patients With Locally Advanced or Metastatic
NSCLC (FLAURA) trial27 and registration for this indication

by the Food and Drug Administration and European
Medicines Agency is a fact, the expectation is that in the
near future, most patients will be treated with osimertinib
upfront, and p.T790M detection will be of lesser impor-
tance. However, mechanisms of acquired resistance on
first-line osimertinib presented at the European Society for
Medical Oncology 2018 Congress showed a shift toward
more mesenchymal-epithelial transition factor amplifica-
tions (14%); some secondary EGFR mutations, like
p.C797S (7%); and human epidermal growth factor re-
ceptor 2 amplifications (2%).28 In this light, a broader
approach to investigate the resistance mechanism upon
progression seems desirable.

In practice, frequently, only a limited amount of material for
DNA investigation is available, and this is also the case for
blood samples. Because every primer combination in the
ddPCR panel needs a new input of specimen, this is
a disadvantage when looking for a resistance mechanism
with a wide view. An advantage is the fast lead time because
ddPCR can generate a quick answer for the clinician (ie,
within 1 working day when needed).

NGS can explore a broad spectrum of genetic aberrations in
a single run, and the possibilities to detect translocations
and amplifications are expanding quickly. Thus, with the
expanding knowledge of resistance mechanisms and
possible targeted treatments (in development) for these,
the detection of a broad set of genetic aberrations seems
desirable. For example, a BRAF V600E mutation can ap-
pear next to the primary activating EGFRmutation for which
a dabrafenib and trametinib combination can be added to
the current treatment. On the other hand, NGS is more time
consuming and still much more expensive than ddPCR.
Both plasma-based approaches are limited by the fact that
some resistance mechanisms need a tissue-based di-
agnosis (eg, transformation to small-cell lung cancer).

In conclusion, our study demonstrates that results of EGFR
mutation detection in cfDNA by NGS and ddPCR are
comparable, with a high agreement when the ratio of EGFR
mutant alleles to wild-type alleles is compared. NGS was
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comparable with ddPCR in sensitivity for p.T790M de-
tection. NGS performed better in detecting specific,
sometimes previously unknown, genetic alterations be-
cause of the broader panel but at a higher cost. Our results

confirm the ability to detect targetable aberrations in blood,
which provides possibilities for new lines of targeted
treatments in daily practice without the necessity of tissue
procurement in many patients.
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