39 research outputs found

    Mesenchymal stem cells in autoimmune diseases: hype or hope?

    Get PDF
    Intervention with mesenchymal stem cells (MSCs) represents a promising therapeutic tool in treatment-refractory autoimmune diseases. A new report by Schurgers and colleagues in a previous issue of Arthritis Research & Therapy sheds novel mechanistic insight into the pathways employed by MSCs to suppress T-cell proliferation in vitro, but, at the same time, indicates that MSCs do not influence T-cell reactivity and the disease course in an in vivo arthritis model. Such discrepancies between the in vitro and in vivo effects of potent cellular immune modulators should spark further research and should be interpreted as a sign of caution for the in vitro design of MSC-derived interventions in the setting of human autoimmune diseases

    Peripheral blood hematopoietic stem and progenitor cell frequency is unchanged in patients with alpha-1-antitrypsin deficiency

    Get PDF
    Granulocyte-colony-stimulating factor (G-CSF)-induced hematopoietic stem and progenitor cell (HSPC) mobilization is associated with the release of neutrophil-derived proteases. Previously, we have shown that alpha-1-antitrypsin (AAT) inhibits these proteases in mice, resulting in inhibition of HSPC mobilization. Here, we studied the relationship between AAT and HSPC in steady state and cytokine-induced mobilization in humans. Patients with alpha-1-antitrypsin deficiency (AATD) have an 85-90 % decrease of AAT in the peripheral blood (PB). We hypothesized that this leads to increased proteolytic activity in the bone marrow and increased steady-state PB HSPC numbers. Using flow cytometry and semi-solid cell culture, we found no significant difference in PB HSPC in AATD patients (n = 18) as compared to controls (n = 22). Healthy stem cell donors (n = 43) were mobilized with G-CSF for 5 days and the number of CD45(+)/CD34(+) HSPC were determined in PB. We found that, during mobilization, PB AAT levels increased significantly, positively correlating with PB CD45(+)/CD34(+) cells (r = 0.31, p = 0.005). In conclusion, although serum AAT levels and HSPC mobilization in healthy stem cell donors are positively correlated, AAT is not an indispensable protease-inhibitor in the constitutive circulation of HSPC. These findings suggest a model in which both protease-dependent and -independent pathways contribute to HSPC mobilization

    Treating Ischemically Damaged Porcine Kidneys with Human Bone Marrow- and Adipose Tissue-Derived Mesenchymal Stromal Cells During Ex Vivo Normothermic Machine Perfusion

    Get PDF
    Pretransplant normothermic machine perfusion (NMP) of donor kidneys offers the unique opportunity to perform active interventions to an isolated renal graft before transplantation. There is increasing evidence that mesenchymal stromal cells (MSCs) could have a paracrine/endocrine regenerative effect on ischemia-reperfusion injury. The purpose of this study was to determine which cytokines are secreted by MSCs during NMP of a porcine kidney. Viable porcine kidneys and autologous whole blood were obtained from a slaughterhouse. Warm ischemia time was standardized at 20 min and subsequent hypothermic machine perfusion was performed during 2-3 h. Thereafter, kidneys were machine perfused at 37 degrees C during 7 h. After 1 h of NMP, 0, 10(7)cultured human adipose tissue-derived MSCs, or 10(7)cultured bone marrow-derived MSCs were added (n = 5 per group). In a fourth experimental group, 7-h NMP was performed with 10(7)adipose tissue-derived MSCs, without a kidney in the circuit. Kidneys perfused with MSCs showed lower lactate dehydrogenase and neutrophil gelatinase-associated lipocalin levels in comparison with the control group. Also, elevated levels of human hepatocyte growth factor, interleukin (IL)-6, and IL-8 were found in the perfusate of the groups perfused with MSCs compared to the control groups. This study suggests that MSCs, in contact with an injured kidney during NMP, could lead to lower levels of injury markers and induce the release of immunomodulatory cytokines.Nephrolog

    A robust and standardized method to isolate and expand mesenchymal stromal cells from human umbilical cord

    Get PDF
    Background aimsHuman umbilical cord–derived mesenchymal stromal cells (hUC-MSCs) are increasingly used in research and therapy. To obtain hUC-MSCs, a diversity of isolation and expansion methods are applied. Here, we report on a robust and standardized method for hUC-MSC isolation and expansion.MethodsUsing 90 hUC donors, we compared and optimized critical variables during each phase of the multi-step procedure involving UC collection, processing, MSC isolation, expansion and characterization. Furthermore, we assessed the effect of donor-to-donor variability regarding UC morphology and donor attributes on hUC-MSC characteristics.ResultsWe demonstrated robustness of our method across 90 UC donors at each step of the procedure. With our method, UCs can be collected up to 6 h after birth, and UC-processing can be initiated up to 48 h after collection without impacting on hUC-MSC characteristics. The removal of blood vessels before explant cultures improved hUC-MSC purity. Expansion in Minimum essential medium α supplemented with human platelet lysate increased reproducibility of the expansion rate and MSC characteristics as compared with Dulbecco's Modified Eagle's Medium supplemented with fetal bovine serum. The isolated hUC-MSCs showed a purity of ∼98.9%, a viability of >97% and a high proliferative capacity. Trilineage differentiation capacity of hUC-MSCs was reduced as compared with bone marrow-derived MSCs. Functional assays indicated that the hUC-MSCs were able to inhibit T-cell proliferation demonstrating their immune-modulatory capacity.ConclusionsWe present a robust and standardized method to isolate and expand hUC-MSCs, minimizing technical variability and thereby lay a foundation to advance reliability and comparability of results obtained from different donors and different studies.Molecular Epidemiolog

    A unique immune signature in blood separates therapy-refractory from therapy-responsive acute graft-versus-host disease

    Get PDF
    Acute graft-versus-host disease (aGVHD) is an immune cell‒driven, potentially lethal complication of allogeneic hematopoietic stem cell transplantation affecting diverse organs, including the skin, liver, and gastrointestinal (GI) tract. We applied mass cytometry (CyTOF) to dissect circulating myeloid and lymphoid cells in children with severe (grade III-IV) aGVHD treated with immune suppressive drugs alone (first-line therapy) or in combination with mesenchymal stromal cells (MSCs; second-line therapy). These results were compared with CyTOF data generated in children who underwent transplantation with no aGVHD or age-matched healthy control participants. Onset of aGVHD was associated with the appearance of CD11b+CD163+ myeloid cells in the blood and accumulation in the skin and GI tract. Distinct T-cell populations, including TCRγδ+ cells, expressing activation markers and chemokine receptors guiding homing to the skin and GI tract were found in the same blood samples. CXCR3+ T cells released inflammation-promoting factors after overnight stimulation. These results indicate that lymphoid and myeloid compartments are triggered at aGVHD onset. Immunoglobulin M (IgM) presumably class switched, plasmablasts, and 2 distinct CD11b– dendritic cell subsets were other prominent immune populations found early during the course of aGVHD in patients refractory to both first- and second-line (MSC-based) therapy. In these nonresponding patients, effector and regulatory T cells with skin- or gut-homing receptors also remained proportionally high over time, whereas their frequencies declined in therapy responders. Our results underscore the additive value of high-dimensional immune cell profiling for clinical response evaluation, which may assist timely decision-making in the management of severe aGVHD.</p

    Twisting the theory on the origin of human umbilical cord coiling featuring monozygotic twins

    Get PDF
    The human umbilical cord (hUC) is the lifeline that connects the fetus to the mother. Hypercoiling of the hUC is associated with pre- and perinatal morbidity and mortality. We investigated the origin of hUC hypercoiling using state-of-the-art imaging and omics approaches. Macroscopic inspection of the hUC revealed the helices to originate from the arteries rather than other components of the hUC. Digital reconstruction of the hUC arteries showed the dynamic alignment of two layers of muscle fibers in the tunica media aligning in opposing directions. We observed that genetically identical twins can be discordant for hUC coiling, excluding genetic, many environmental, and parental origins of hUC coiling. Comparing the transcriptomic and DNA methylation profile of the hUC arteries of four twin pairs with discordant cord coiling, we detected 28 differentially expressed genes, but no differentially methylated CpGs. These genes play a role in vascular development, cell-cell interaction, and axis formation and may account for the increased number of hUC helices. When combined, our results provide a novel framework to understand the origin of hUC helices in fetal development.</p

    Twisting the theory on the origin of human umbilical cord coiling featuring monozygotic twins

    Get PDF
    The human umbilical cord (hUC) is the lifeline that connects the fetus to the mother. Hypercoiling of the hUC is associated with pre- and perinatal morbidity and mortality. We investigated the origin of hUC hypercoiling using state-of-the-art imaging and omics approaches. Macroscopic inspection of the hUC revealed the helices to originate from the arteries rather than other components of the hUC. Digital reconstruction of the hUC arteries showed the dynamic alignment of two layers of muscle fibers in the tunica media aligning in opposing directions. We observed that genetically identical twins can be discordant for hUC coiling, excluding genetic, many environmental, and parental origins of hUC coiling. Comparing the transcriptomic and DNA methylation profile of the hUC arteries of four twin pairs with discordant cord coiling, we detected 28 differentially expressed genes, but no differentially methylated CpGs. These genes play a role in vascular development, cell-cell interaction, and axis formation and may account for the increased number of hUC helices. When combined, our results provide a novel framework to understand the origin of hUC helices in fetal development.</p

    CD97 is differentially expressed on murine hematopoietic stem-and progenitor-cells

    No full text
    BACKGROUND: CD97 is a member of the epidermal growth factor-seven transmembrane (EGF-TM7) family of adhesion receptors and is broadly expressed on hematopoietic cells. The aim of this study was to investigate the expression of CD97 on hematopoietic stem- and progenitor cells (HSC/HPC). DESIGN AND METHODS: CD97 expression on hematopoietic stem- and progenitor cells was studied in BALB/c, C57BL/6 and DBA/1 mice using flow cytometry. Functional hematopoietic stem- and progenitor cell characteristics were investigated in vitro and in vivo by progenitor cell assays, cobblestone area forming cell assays and bone marrow cell transplantation. RESULTS: Analysis of CD97 expression on murine bone marrow cells showed three major populations i.e. CD97(HI), CD97(INT) and CD97(NEG) cells. Functional studies revealed that radioprotective capacity and cobblestone area forming cell day 28-35 activity resides in the CD97(INT) bone marrow cell fraction while CFU-GM colony-forming capacity mainly resides in the CD97(NEG) population in all strains. In C57BL/6 and DBA/1 mice CD97(NEG) and CD97(HI) bone marrow cells show hematopoietic stem cell characteristics as well. Further functional analysis of BALB/c CD97(INT) bone marrow cells revealed that c-Kit(HI)CD97(INT) bone marrow cells exhibit HSC activity and are 1.5-fold enriched for cobblestone area forming cell-day 35 activity compared to c-Kit(HI) bone marrow cells. Moreover, phenotypical analysis showed that BALB/c and C57BL/6 HSC are CD97(INT), while DBA/1 HSC are CD97(HI). CONCLUSIONS: CD97 is differentially expressed on hematopoietic stem cells and hematopoietic progenitor cells. Committed progenitor cell activity is largely comprised in the CD97(NEG) fraction, while the CD97(INT) population contains hematopoietic stem cell activity. In BALB/c mice, CD97 expression can be applied to almost completely separate colony-forming cells and cells exhibiting radioprotective capacity. In addition we propose that the CD97(INT)c-Kit(HI) phenotype allows simple and rapid purification of murine hematopoietic stem cell

    Differential role of CD97 in interleukin-8-induced and granulocyte-colony stimulating factor-induced hematopoietic stem and progenitor cell mobilization

    No full text
    CD97 is broadly expressed on hematopoietic cells and is involved in neutrophil migration. Since neutrophils are key regulators in HSC/HPC mobilization, we studied a possible role for CD97 in interleukin-8 and granulocyte-colony stimulating factor-induced HSC/HPC mobilization. Mobilization was absent in mice receiving CD97 mAb followed by interleukin-8, while granulocyte-colony stimulating factor-induced mobilization remained unaltered following anti-CD97 administration. Furthermore, combined administration of CD97 mAb and IL-8 induced a significant reduction in the neutrophilic compartment. We hypothesize that the absence of interleukin-8-induced HSC/HPC mobilization after CD97 mAb administration is due to its effect on neutrophil functio
    corecore