76 research outputs found
Role models for complex networks
We present a framework for automatically decomposing ("block-modeling") the
functional classes of agents within a complex network. These classes are
represented by the nodes of an image graph ("block model") depicting the main
patterns of connectivity and thus functional roles in the network. Using a
first principles approach, we derive a measure for the fit of a network to any
given image graph allowing objective hypothesis testing. From the properties of
an optimal fit, we derive how to find the best fitting image graph directly
from the network and present a criterion to avoid overfitting. The method can
handle both two-mode and one-mode data, directed and undirected as well as
weighted networks and allows for different types of links to be dealt with
simultaneously. It is non-parametric and computationally efficient. The
concepts of structural equivalence and modularity are found as special cases of
our approach. We apply our method to the world trade network and analyze the
roles individual countries play in the global economy
A Substantial Population of Low Mass Stars in Luminous Elliptical Galaxies
The stellar initial mass function (IMF) describes the mass distribution of
stars at the time of their formation and is of fundamental importance for many
areas of astrophysics. The IMF is reasonably well constrained in the disk of
the Milky Way but we have very little direct information on the form of the IMF
in other galaxies and at earlier cosmic epochs. Here we investigate the stellar
mass function in elliptical galaxies by measuring the strength of the Na I
doublet and the Wing-Ford molecular FeH band in their spectra. These lines are
strong in stars with masses <0.3 Msun and weak or absent in all other types of
stars. We unambiguously detect both signatures, consistent with previous
studies that were based on data of lower signal-to-noise ratio. The direct
detection of the light of low mass stars implies that they are very abundant in
elliptical galaxies, making up >80% of the total number of stars and
contributing >60% of the total stellar mass. We infer that the IMF in massive
star-forming galaxies in the early Universe produced many more low mass stars
than the IMF in the Milky Way disk, and was probably slightly steeper than the
Salpeter form in the mass range 0.1 - 1 Msun.Comment: To appear in Natur
A high stellar velocity dispersion for a compact massive galaxy at z=2.2
Recent studies have found that the oldest and most luminous galaxies in the
early Universe are surprisingly compact, having stellar masses similar to
present-day elliptical galaxies but much smaller sizes. This finding has
attracted considerable attention as it suggests that massive galaxies have
grown by a factor of ~five in size over the past ten billion years. A key test
of these results is a determination of the stellar kinematics of one of the
compact galaxies: if the sizes of these objects are as extreme as has been
claimed, their stars are expected to have much higher velocities than those in
present-day galaxies of the same mass. Here we report a measurement of the
stellar velocity dispersion of a massive compact galaxy at redshift z=2.186,
corresponding to a look-back time of 10.7 billion years. The velocity
dispersion is very high at 510 (+165, -95) km/s, consistent with the mass and
compactness of the galaxy inferred from photometric data and indicating
significant recent structural and dynamical evolution of massive galaxies. The
uncertainty in the dispersion was determined from simulations which include the
effects of noise and template mismatch. However, we caution that some subtle
systematic effect may influence the analysis given the low signal-to-noise
ratio of our spectrum.Comment: Accepted as a Letter to Nature. A press release will be issued at the
time of publicatio
The Evolutionary Status of Clusters of Galaxies at z ~ 1
Combined HST, X-ray, and ground-based optical studies show that clusters of
galaxies are largely "in place" by , an epoch when the Universe was
less than half its present age. High resolution images show that elliptical,
S0, and spiral galaxies are present in clusters at redshifts up to . Analysis of the CMDs suggest that the cluster ellipticals formed their
stars several Gyr earlier, near redshift 3. The morphology--density relation is
well established at , with star-forming spirals and irregulars residing
mostly in the outer parts of the clusters and E/S0s concentrated in dense
clumps. The intracluster medium has already reached the metallicity of
present-day clusters. The distributions of the hot gas and early-type galaxies
are similar in clusters, indicating both have largely virialized in
the deepest potentials wells. In spite of the many similarities between
and present-day clusters, there are significant differences. The
morphologies revealed by the hot gas, and particularly the early-type galaxies,
are elongated rather than spherical. We appear to be observing the clusters at
an epoch when the sub-clusters and groups are still assembling into a single
regular cluster. Support for this picture comes from CL0152 where the gas
appears to be lagging behind the luminous and dark mass in two merging
sub-components. Moreover, the luminosity difference between the first and
second brightest cluster galaxies at is smaller than in 93% of
present-day Abell clusters, which suggests that considerable luminosity
evolution through merging has occurred since that epoch. Evolution is also seen
in the bolometric X-ray luminosity function.Comment: 18 pages, 12 figures, to appear in Penetrating Bars through Masks of
Cosmic Dust: the Hubble Tuing Fork Strikes a New Note, eds. D.L. Block, K.C.
Freeman, I. Puerari & R. Groess. Figures degraded to meet astroph size limit;
a version with higher resolution figures may be downloaded from:
http://acs.pha.jhu.edu/~jpb/z1clusters/ford_clusters.pd
An Over-Massive Black Hole in the Compact Lenticular Galaxy NGC1277
All massive galaxies likely have supermassive black holes at their centers,
and the masses of the black holes are known to correlate with properties of the
host galaxy bulge component. Several explanations have been proposed for the
existence of these locally-established empirical relationships; they include
the non-causal, statistical process of galaxy-galaxy merging, direct feedback
between the black hole and its host galaxy, or galaxy-galaxy merging and the
subsequent violent relaxation and dissipation. The empirical scaling relations
are thus important for distinguishing between various theoretical models of
galaxy evolution, and they further form the basis for all black hole mass
measurements at large distances. In particular, observations have shown that
the mass of the black hole is typically 0.1% of the stellar bulge mass of the
galaxy. The small galaxy NGC4486B currently has the largest published fraction
of its mass in a black hole at 11%. Here we report observations of the stellar
kinematics of NGC 1277, which is a compact, disky galaxy with a mass of 1.2 x
10^11 Msun. From the data, we determine that the mass of the central black hole
is 1.7 x 10^10 Msun, or 59% its bulge mass. Five other compact galaxies have
properties similar to NGC 1277 and therefore may also contain over-sized black
holes. It is not yet known if these galaxies represent a tail of a
distribution, or if disk-dominated galaxies fail to follow the normal black
hole mass scaling relations.Comment: 7 pages. 6 figures. Nature. Animation at
http://www.mpia.de/~bosch/blackholes.htm
ZFOURGE: Extreme 5007 emission may be a common early-lifetime phase for star-forming galaxies at
Using the \prospector\ spectral energy distribution (SED) fitting code, we
analyze the properties of 19 Extreme Emission Line Galaxies (EELGs) identified
in the bluest composite SED in the \zfourge\ survey at .
\prospector\ includes a physical model for nebular emission and returns
probability distributions for stellar mass, stellar metallicity, dust
attenuation, and nonparametric star formation history (SFH). The EELGs show
evidence for a starburst in the most recent 50 Myr, with the median EELG having
a specific star formation rate (sSFR) of 4.6 Gyr and forming 15\% of its
mass in this short time. For a sample of more typical star-forming galaxies
(SFGs) at the same redshifts, the median SFG has a sSFR of 1.1 Gyr and
forms only of its mass in the last 50 Myr. We find that virtually all of
our EELGs have rising SFHs, while most of our SFGs do not. From our analysis,
we hypothesize that many, if not most, star-forming galaxies at
undergo an extreme H+[\hbox{{\rm O}\kern 0.1em{\sc iii}}] emission
line phase early in their lifetimes. In a companion paper, we obtain
spectroscopic confirmation of the EELGs as part of our {\sc MOSEL} survey. In
the future, explorations of uncertainties in modeling the UV slope for galaxies
at are needed to better constrain their properties, e.g. stellar
metallicities.Comment: 11 pages, 5 figures (main figure is fig 5), accepted for publication
in Ap
Spectroscopy of z ∼ 6 i-dropout galaxies : frequency of Lyα emission and the sizes of Lyα-emitting galaxies
We report on deep spectroscopy, using LRIS on Keck I and FORS2 on the VLT, of a sample of 22 candidate z similar to 6 Lyman break galaxies (LBGs) selected by the (i)775 - z(850) > 1: 3 dropout criterion. Redshifts could be measured for eight objects. These redshifts are all in the range z = 5: 5-6.1, confirming the efficiency of the i775 - z850 color selection technique. Six of the confirmed galaxies show Ly alpha emission. Assuming that the 14 objects without redshifts are z similar to 6 LBGs that lack detectable Ly alpha emission lines, we infer that the fraction of Ly alpha-emitting LBGs with Ly alpha equivalent widths greater than 20 angstrom among z similar to 6 LBGs is approximate to 30%, similar to that found at z similar to 3. Every Ly alpha-emitting object in our sample is compact, with half-light radii r(hl) 97% confidence. We speculate that the small sizes of the Ly alpha-emitting LBGs are due to these objects being less massive than other LBGs at z similar to 6
Spectroscopic confirmation of a substantial population of luminous red galaxies at redshifts z ≳ 2
We confirm spectroscopically the existence of a population of galaxies at z greater than or similar to 2 with rest-frame optical colors similar to normal nearby galaxies. The galaxies were identified by their red near-infrared colors in deep images obtained with the Infrared Spectrometer and Array Camera on the Very Large Telescope of the field around the foreground cluster MS 1054-03. Redshifts of six galaxies with J(s)-K-s > 2.3 were measured from optical spectra obtained with the W. M. Keck telescope. Five out of six are in the range, demonstrating that the 2.43 = z = 3.52 J(s)-K-s color selection is quite efficient. The rest-frame ultraviolet spectra of confirmed z > 2 galaxies display a range of properties, with two galaxies showing emission lines characteristic of active galactic nuclei, two having Lyalpha in emission, and one showing interstellar absorption lines only. Their full spectral energy distributions are well described by constant star formation models with ages 1.4-2.6 Gyr, except for one galaxy whose colors indicate a dusty starburst. The confirmed z > 2 galaxies are very luminous: their K-s magnitudes are in the range 19.2-19.9, corresponding to rest-frame absolute V magnitudes from -24.8 to -23.2. Assuming that our bright spectroscopic sample is representative for the general population of J(s)-K-s selected objects, we find that the surface density of red z greater than or similar to 2 galaxies is approximate to0.9 arcmin(-2) to K-s = 21. The surface density is comparable to that of Lyman break-selected galaxies with K-s < 21, when corrections are made for the different redshift distributions of the two samples. Although there will be some overlap between the two populations, most "optical-break" galaxies are too faint in the rest-frame ultraviolet to be selected as Lyman break galaxies. The most straightforward interpretation is that star formation in typical optical-break galaxies started earlier than in typical Lyman break galaxies. Optical-break galaxies may be the oldest and most massive galaxies yet identified at, and they z 1 2 could evolve into early-type galaxies and bulges
Recommended from our members
UV-continuum slopes of >4000 z ∼ 4-8 galaxies from the HUDF/XDF, HUDF09, ERS, CANDELS-south, and CANDELS-north fields
We measure the UV-continuum slope beta for over 4000 high-redshift galaxies
over a wide range of redshifts z~4-8 and luminosities from the HST HUDF/XDF,
HUDF09-1, HUDF09-2, ERS, CANDELS-N, and CANDELS-S data sets. Our new beta
results reach very faint levels at z~4 (-15.5 mag: 0.006 L*(z=3)), z~5 (-16.5
mag: 0.014L*(z=3)), and z~6 and z~7 (-17 mag: 0.025 L*(z=3)). Inconsistencies
between previous studies led us to conduct a comprehensive review of systematic
errors and develop a new technique for measuring beta that is robust against
biases that arise from the impact of noise. We demonstrate, by object-by-object
comparisons, that all previous studies, including our own and those done on the
latest HUDF12 dataset, suffer from small systematic errors in beta. We find
that after correcting for the systematic errors (typically d(beta) ~0.1-0.2)
all beta results at z~7 from different groups are in excellent agreement. The
mean beta we measure for faint (-18 mag: 0.1L*(z=3)) z~4, z~5, z~6, and z~7
galaxies is -2.03+/-0.03+/-0.06 (random and systematic errors),
-2.14+/-0.06+/-0.06, -2.24+/-0.11+/-0.08, and -2.30+/-0.18+/-0.13,
respectively. Our new beta values are redder than we have reported in the past,
but bluer than other recent results. Our previously reported trend of bluer
beta's at lower luminosities is confirmed, as is the evolution to bluer beta's
at high redshifts. beta appears to show only a mild luminosity dependence
faintward of M(UV,AB) ~ -19 mag, suggesting that the mean beta asymptotes to ~
-2.2 to -2.4 for faint z>~4 galaxies. At z~7, the observed beta's suggest
non-zero, but low dust extinction, and they agree well with values predicted in
cosmological hydrodynamical simulations
Type IIn supernovae at z ~ 2 from archival data
Supernovae have been confirmed to redshift z ~ 1.7 for type Ia (thermonuclear
detonation of a white dwarf) and to z ~ 0.7 for type II (collapse of the core
of the star). The subclass type IIn supernovae are luminous core-collapse
explosions of massive stars and, unlike other types, are very bright in the
ultraviolet, which should enable them to be found optically at redshifts z ~ 2
and higher. In addition, the interaction of the ejecta with circumstellar
material creates strong, long-lived emission lines that allow spectroscopic
confirmation of many events of this type at z ~ 2 for 3 - 5 years after
explosion. Here we report three spectroscopically confirmed type IIn
supernovae, at redshifts z = 0.808, 2.013 and 2.357, detected in archival data
using a method designed to exploit these properties at z ~ 2. Type IIn
supernovae directly probe the formation of massive stars at high redshift. The
number found to date is consistent with the expectations of a locally measured
stellar initial mass function, but not with an evolving initial mass function
proposed to explain independent observations at low and high redshift.Comment: 8 pages, 2 figures, includes supplementary informatio
- …