414 research outputs found

    Systematic Density Expansion of the Lyapunov Exponents for a Two-dimensional Random Lorentz Gas

    Full text link
    We study the Lyapunov exponents of a two-dimensional, random Lorentz gas at low density. The positive Lyapunov exponent may be obtained either by a direct analysis of the dynamics, or by the use of kinetic theory methods. To leading orders in the density of scatterers it is of the form A0n~lnn~+B0n~A_{0}\tilde{n}\ln\tilde{n}+B_{0}\tilde{n}, where A0A_{0} and B0B_{0} are known constants and n~\tilde{n} is the number density of scatterers expressed in dimensionless units. In this paper, we find that through order (n~2)(\tilde{n}^{2}), the positive Lyapunov exponent is of the form A0n~lnn~+B0n~+A1n~2lnn~+B1n~2A_{0}\tilde{n}\ln\tilde{n}+B_{0}\tilde{n}+A_{1}\tilde{n}^{2}\ln\tilde{n} +B_{1}\tilde{n}^{2}. Explicit numerical values of the new constants A1A_{1} and B1B_{1} are obtained by means of a systematic analysis. This takes into account, up to O(n~2)O(\tilde{n}^{2}), the effects of {\it all\/} possible trajectories in two versions of the model; in one version overlapping scatterer configurations are allowed and in the other they are not.Comment: 12 pages, 9 figures, minor changes in this version, to appear in J. Stat. Phy

    Front propagation techniques to calculate the largest Lyapunov exponent of dilute hard disk gases

    Full text link
    A kinetic approach is adopted to describe the exponential growth of a small deviation of the initial phase space point, measured by the largest Lyapunov exponent, for a dilute system of hard disks, both in equilibrium and in a uniform shear flow. We derive a generalized Boltzmann equation for an extended one-particle distribution that includes deviations from the reference phase space point. The equation is valid for very low densities n, and requires an unusual expansion in powers of 1/|ln n|. It reproduces and extends results from the earlier, more heuristic clock model and may be interpreted as describing a front propagating into an unstable state. The asymptotic speed of propagation of the front is proportional to the largest Lyapunov exponent of the system. Its value may be found by applying the standard front speed selection mechanism for pulled fronts to the case at hand. For the equilibrium case, an explicit expression for the largest Lyapunov exponent is given and for sheared systems we give explicit expressions that may be evaluated numerically to obtain the shear rate dependence of the largest Lyapunov exponent.Comment: 26 pages REVTeX, 1 eps figure. Added remarks, a reference and corrected some typo

    Chaotic Properties of Dilute Two and Three Dimensional Random Lorentz Gases II: Open Systems

    Full text link
    We calculate the spectrum of Lyapunov exponents for a point particle moving in a random array of fixed hard disk or hard sphere scatterers, i.e. the disordered Lorentz gas, in a generic nonequilibrium situation. In a large system which is finite in at least some directions, and with absorbing boundary conditions, the moving particle escapes the system with probability one. However, there is a set of zero Lebesgue measure of initial phase points for the moving particle, such that escape never occurs. Typically, this set of points forms a fractal repeller, and the Lyapunov spectrum is calculated here for trajectories on this repeller. For this calculation, we need the solution of the recently introduced extended Boltzmann equation for the nonequilibrium distribution of the radius of curvature matrix and the solution of the standard Boltzmann equation. The escape-rate formalism then gives an explicit result for the Kolmogorov Sinai entropy on the repeller.Comment: submitted to Phys Rev

    Kinetic Theory Estimates for the Kolmogorov-Sinai Entropy and the Largest Lyapunov Exponents for Dilute, Hard-Ball Gases and for Dilute, Random Lorentz Gases

    Full text link
    The kinetic theory of gases provides methods for calculating Lyapunov exponents and other quantities, such as Kolmogorov-Sinai entropies, that characterize the chaotic behavior of hard-ball gases. Here we illustrate the use of these methods for calculating the Kolmogorov-Sinai entropy, and the largest positive Lyapunov exponent, for dilute hard-ball gases in equilibrium. The calculation of the largest Lyapunov exponent makes interesting connections with the theory of propagation of hydrodynamic fronts. Calculations are also presented for the Lyapunov spectrum of dilute, random Lorentz gases in two and three dimensions, which are considerably simpler than the corresponding calculations for hard-ball gases. The article concludes with a brief discussion of some interesting open problems.Comment: 41 pages (REVTEX); 7 figs., 4 of which are included in LaTeX source. (Fig.7 doesn't print well on some printers) This revised paper will appear in "Hard Ball Systems and the Lorentz Gas", D. Szasz ed., Encyclopaedia of Mathematical Sciences, Springe

    Largest Lyapunov Exponent for Many Particle Systems at Low Densities

    Full text link
    The largest Lyapunov exponent λ+\lambda^+ for a dilute gas with short range interactions in equilibrium is studied by a mapping to a clock model, in which every particle carries a watch, with a discrete time that is advanced at collisions. This model has a propagating front solution with a speed that determines λ+\lambda^+, for which we find a density dependence as predicted by Krylov, but with a larger prefactor. Simulations for the clock model and for hard sphere and hard disk systems confirm these results and are in excellent mutual agreement. They show a slow convergence of λ+\lambda^+ with increasing particle number, in good agreement with a prediction by Brunet and Derrida.Comment: 4 pages, RevTeX, 2 Figures (encapsulated postscript). Submitted to Phys. Rev. Let

    Stabilized Lattice Boltzmann-Enskog method for compressible flows and its application to one and two-component fluids in nanochannels

    Full text link
    A numerically stable method to solve the discretized Boltzmann-Enskog equation describing the behavior of non ideal fluids under inhomogeneous conditions is presented. The algorithm employed uses a Lagrangian finite-difference scheme for the treatment of the convective term and a forcing term to account for the molecular repulsion together with a Bhatnagar-Gross-Krook relaxation term. In order to eliminate the spurious currents induced by the numerical discretization procedure, we use a trapezoidal rule for the time integration together with a version of the two-distribution method of He et al. (J. Comp. Phys 152, 642 (1999)). Numerical tests show that, in the case of one component fluid in the presence of a spherical potential well, the proposed method reduces the numerical error by several orders of magnitude. We conduct another test by considering the flow of a two component fluid in a channel with a bottleneck and provide information about the density and velocity field in this structured geometry.Comment: to appear in Physical Review

    The Lyapunov spectrum of the many-dimensional dilute random Lorentz gas

    Full text link
    For a better understanding of the chaotic behavior of systems of many moving particles it is useful to look at other systems with many degrees of freedom. An interesting example is the high-dimensional Lorentz gas, which, just like a system of moving hard spheres, may be interpreted as a dynamical system consisting of a point particle in a high-dimensional phase space, moving among fixed scatterers. In this paper, we calculate the full spectrum of Lyapunov exponents for the dilute random Lorentz gas in an arbitrary number of dimensions. We find that the spectrum becomes flatter with increasing dimensionality. Furthermore, for fixed collision frequency the separation between the largest Lyapunov exponent and the second largest one increases logarithmically with dimensionality, whereas the separations between Lyapunov exponents of given indices not involving the largest one, go to fixed limits.Comment: 8 pages, revtex, 6 figures, submitted to Physical Review

    Goldstone modes in Lyapunov spectra of hard sphere systems

    Full text link
    In this paper, we demonstrate how the Lyapunov exponents close to zero of a system of many hard spheres can be described as Goldstone modes, by using a Boltzmann type of approach. At low densities, the correct form is found for the wave number dependence of the exponents as well as for the corresponding eigenvectors in tangent-space. The predicted values for the Lyapunov exponents belonging to the transverse mode are within a few percent of the values found in recent simulations, the propagation velocity for the longitudinal mode is within 1%, but the value for the Lyapunov exponent belonging to the longitudinal mode deviates from the simulations by 30%. For higher densities, the predicted values deviate more from the values calculated in the simulations. These deviations may be due to contributions from ring collisions and similar terms, which, even at low densities, can contribute to the leading order.Comment: 12 pages revtex, 5 figures, accepted by Physical Review
    corecore