Kinetic Theory Estimates for the Kolmogorov-Sinai Entropy and the
Largest Lyapunov Exponents for Dilute, Hard-Ball Gases and for Dilute, Random
Lorentz Gases
The kinetic theory of gases provides methods for calculating Lyapunov
exponents and other quantities, such as Kolmogorov-Sinai entropies, that
characterize the chaotic behavior of hard-ball gases. Here we illustrate the
use of these methods for calculating the Kolmogorov-Sinai entropy, and the
largest positive Lyapunov exponent, for dilute hard-ball gases in equilibrium.
The calculation of the largest Lyapunov exponent makes interesting connections
with the theory of propagation of hydrodynamic fronts. Calculations are also
presented for the Lyapunov spectrum of dilute, random Lorentz gases in two and
three dimensions, which are considerably simpler than the corresponding
calculations for hard-ball gases. The article concludes with a brief discussion
of some interesting open problems.Comment: 41 pages (REVTEX); 7 figs., 4 of which are included in LaTeX source.
(Fig.7 doesn't print well on some printers) This revised paper will appear in
"Hard Ball Systems and the Lorentz Gas", D. Szasz ed., Encyclopaedia of
Mathematical Sciences, Springe