48 research outputs found
SUL-151 Decreases Airway Neutrophilia as a Prophylactic and Therapeutic Treatment in Mice after Cigarette Smoke Exposure
Chronic obstructive pulmonary disease (COPD) caused by cigarette smoke (CS) is featured by oxidative stress and chronic inflammation. Due to the poor efficacy of standard glucocorticoid therapy, new treatments are required. Here, we investigated whether the novel compound SUL-151 with mitoprotective properties can be used as a prophylactic and therapeutic treatment in a murine CS-induced inflammation model. SUL-151 (4 mg/kg), budesonide (500 μg/kg), or vehicle were administered via oropharyngeal instillation in this prophylactic and therapeutic treatment setting. The number of immune cells was determined in the bronchoalveolar lavage fluid (BALF). Oxidative stress response, mitochondrial adenosine triphosphate (ATP) production, and mitophagy-related proteins were measured in lung homogenates. SUL-151 significantly decreased more than 70% and 50% of CS-induced neutrophils in BALF after prophylactic and therapeutic administration, while budesonide showed no significant reduction in neutrophils. Moreover, SUL-151 prevented the CS-induced decrease in ATP and mitochondrial mtDNA and an increase in putative protein kinase 1 expression in the lung homogenates. The concentration of SUL-151 was significantly correlated with malondialdehyde level and radical scavenging activity in the lungs. SUL-151 inhibited the increased pulmonary inflammation and mitochondrial dysfunction in this CS-induced inflammation model, which implied that SUL-151 might be a promising candidate for COPD treatment
A synbiotic mixture of Bifidobacterium breve M16-V, oligosaccharides and pectin, enhances Short Chain Fatty Acid production and improves lung health in a preclinical model for pulmonary neutrophilia
IntroductionPulmonary neutrophilia is a hallmark of numerous airway diseases including Chronic Obstructive Pulmonary Disease (COPD), Neutrophilic asthma, Acute Lung Injury (ALI), Acute Respiratory Distress Syndrome (ARDS) and COVID-19. The aim of the current study was to investigate the effect of dietary interventions on lung health in context of pulmonary neutrophilia.MethodsMale BALB/cByJ mice received 7 intra-nasal doses of either a vehicle or lipopolysaccharides (LPS). To study the effect of nutritional interventions they received 16 intra-gastric doses of either a vehicle (PBS) or the following supplements (1) probiotic Bifidobacterium breve (B. breve) M16-V; (2) a prebiotic fiber mixture of short-chain galacto-oligosaccharides, long-chain fructo-oligosaccharides, and low-viscosity pectin in a 9:1:2 ratio (scGOS/lcFOS/lvPectin); and (3) A synbiotic combination B. breve M16-V and scGOS/lcFOS/lvPectin. Parameters for lung health included lung function, lung morphology and lung inflammation. Parameters for systemic immunomodulation included levels of fecal short chain fatty acids and regulatory T cells.ResultsThe synbiotic supplement protected against the LPS induced decline in lung function (35% improved lung resistance at baseline p = 0.0002 and 25% at peak challenge, p = 0.0002), provided a significant relief from pulmonary neutrophilia (40.7% less neutrophils, p < 0.01) and improved the pulmonary neutrophil-to-lymphocyte ratio (NLR) by 55.3% (p = 0.0033). Supplements did not impact lung morphology in this specific experiment. LPS applied to the upper airways induced less fecal SCFAs production compared to mice that received PBS. The production of acetic acid between day −5 and day 16 was increased in all unchallenged mice (PBS-PBS p = 0.0003; PBS-Pro p < 0.0001; PBS-Pre, p = 0.0045; PBS-Syn, p = 0.0005) which upon LPS challenge was only observed in mice that received the synbiotic mixture of B. breve M16-V and GOS:FOS:lvPectin (p = 0.0003). A moderate correlation was found for butyric acid and lung function parameters and a weak correlation was found between acetic acid, butyric acid and propionic acid concentrations and NLR.ConclusionThis study suggests bidirectional gut lung cross-talk in a mouse model for pulmonary neutrophilia. Neutrophilic lung inflammation coexisted with attenuated levels of fecal SCFA. The beneficial effects of the synbiotic mixture of B. breve M16-V and GOS:FOS:lvPectin on lung health associated with enhanced levels of SCFAs
Exploring the Modulatory Effect of High-Fat Nutrition on Lipopolysaccharide-Induced Acute Lung Injury in Vagotomized Rats and the Role of the Vagus Nerve
During esophagectomy, the vagus nerve is transected, which may add to the development of postoperative complications. The vagus nerve has been shown to attenuate inflammation and can be activated by a high-fat nutrition via the release of acetylcholine. This binds to α7 nicotinic acetylcholine receptors (α7nAChR) and inhibits α7nAChR-expressing inflammatory cells. This study investigates the role of the vagus nerve and the effect of high-fat nutrition on lipopolysaccharide (LPS)-induced lung injury in rats. Firstly, 48 rats were randomized in 4 groups as follows: sham (sparing vagus nerve), abdominal (selective) vagotomy, cervical vagotomy and cervical vagotomy with an α7nAChR-agonist. Secondly, 24 rats were randomized in 3 groups as follows: sham, sham with an α7nAChR-antagonist and cervical vagotomy with an α7nAChR-antagonist. Finally, 24 rats were randomized in 3 groups as follows: fasting, high-fat nutrition before sham and high-fat nutrition before selective vagotomy. Abdominal (selective) vagotomy did not impact histopathological lung injury (LIS) compared with the control (sham) group (p > 0.999). There was a trend in aggravation of LIS after cervical vagotomy (p = 0.051), even after an α7nAChR-agonist (p = 0.090). Cervical vagotomy with an α7nAChR-antagonist aggravated lung injury (p = 0.004). Furthermore, cervical vagotomy increased macrophages in bronchoalveolar lavage (BAL) fluid and negatively impacted pulmonary function. Other inflammatory cells, TNF-α and IL-6, in the BALF and serum were unaffected. High-fat nutrition reduced LIS after sham (p = 0.012) and selective vagotomy (p = 0.002) compared to fasting. vagotomy. This study underlines the role of the vagus nerve in lung injury and shows that vagus nerve stimulation using high-fat nutrition is effective in reducing lung injury, even after selective vagotomy
Changes in intestinal homeostasis and immunity in a cigarette smoke- and LPS-induced murine model for COPD: the lung-gut axis
Chronic obstructive pulmonary disease (COPD) is often associated with intestinal comorbidities. In this study, changes in intestinal homeostasis and immunity in a cigarette smoke (CS)- and lipopolysaccharide (LPS)-induced COPD model were investigated. Mice were exposed to cigarette smoke or air for 72 days, except days 42, 52, and 62 on which the mice were treated with saline or LPS via intratracheal instillation. Cigarette smoke exposure increased the airway inflammatory cell numbers, mucus production, and different inflammatory mediators, including C-reactive protein (CRP) and keratinocyte-derived chemokine (KC), in bronchoalveolar lavage (BAL) fluid and serum. LPS did not further impact airway inflammatory cell numbers or mucus production but decreased inflammatory mediator levels in BAL fluid. T helper (Th) 1 cells were enhanced in the spleen after cigarette smoke exposure; however, in combination with LPS, cigarette exposure caused an increase in Th1 and Th2 cells. Histomorphological changes were observed in the proximal small intestine after cigarette smoke exposure, and addition of LPS had no effect. Cigarette smoke activated the intestinal immune network for IgA production in the distal small intestine that was associated with increased fecal sIgA levels and enlargement of Peyer's patches. Cigarette smoke plus LPS decreased fecal sIgA levels and the size of Peyer's patches. In conclusion, cigarette smoke with or without LPS affects intestinal health as observed by changes in intestinal histomorphology and immune network for IgA production. Elevated systemic mediators might play a role in the lung-gut cross talk. These findings contribute to a better understanding of intestinal disorders related to COPD
Exploring the Modulatory Effect of High-Fat Nutrition on Lipopolysaccharide-Induced Acute Lung Injury in Vagotomized Rats and the Role of the Vagus Nerve
During esophagectomy, the vagus nerve is transected, which may add to the development of postoperative complications. The vagus nerve has been shown to attenuate inflammation and can be activated by a high-fat nutrition via the release of acetylcholine. This binds to α7 nicotinic acetylcholine receptors (α7nAChR) and inhibits α7nAChR-expressing inflammatory cells. This study investigates the role of the vagus nerve and the effect of high-fat nutrition on lipopolysaccharide (LPS)-induced lung injury in rats. Firstly, 48 rats were randomized in 4 groups as follows: sham (sparing vagus nerve), abdominal (selective) vagotomy, cervical vagotomy and cervical vagotomy with an α7nAChR-agonist. Secondly, 24 rats were randomized in 3 groups as follows: sham, sham with an α7nAChR-antagonist and cervical vagotomy with an α7nAChR-antagonist. Finally, 24 rats were randomized in 3 groups as follows: fasting, high-fat nutrition before sham and high-fat nutrition before selective vagotomy. Abdominal (selective) vagotomy did not impact histopathological lung injury (LIS) compared with the control (sham) group ( p > 0.999). There was a trend in aggravation of LIS after cervical vagotomy ( p = 0.051), even after an α7nAChR-agonist ( p = 0.090). Cervical vagotomy with an α7nAChR-antagonist aggravated lung injury ( p = 0.004). Furthermore, cervical vagotomy increased macrophages in bronchoalveolar lavage (BAL) fluid and negatively impacted pulmonary function. Other inflammatory cells, TNF-α and IL-6, in the BALF and serum were unaffected. High-fat nutrition reduced LIS after sham ( p = 0.012) and selective vagotomy ( p = 0.002) compared to fasting. vagotomy. This study underlines the role of the vagus nerve in lung injury and shows that vagus nerve stimulation using high-fat nutrition is effective in reducing lung injury, even after selective vagotomy
Effects of Cigarette Smoke on Adipose and Skeletal Muscle Tissue:: In Vivo and In Vitro Studies
Chronic obstructive pulmonary disease (COPD), often caused by smoking, is a chronic lung disease with systemic manifestations including metabolic comorbidities. This study investigates adaptive and pathological alterations in adipose and skeletal muscle tissue following cigarette smoke exposure using in vivo and in vitro models. Mice were exposed to cigarette smoke or air for 72 days and the pre-adipose cell line 3T3-L1 was utilized as an in vitro model. Cigarette smoke exposure decreased body weight, and the proportional loss in fat mass was more pronounced than the lean mass loss. Cigarette smoke exposure reduced adipocyte size and increased adipocyte numbers. Adipose macrophage numbers and associated cytokine levels, including interleukin-1β, interleukine-6 and tumor necrosis factor-α were elevated in smoke-exposed mice. Muscle strength and protein synthesis signaling were decreased after smoke exposure; however, muscle mass was not changed. In vitro studies demonstrated that lipolysis and fatty acid oxidation were upregulated in cigarette smoke-exposed pre-adipocytes. In conclusion, cigarette smoke exposure induces a loss of whole-body fat mass and adipose atrophy, which is likely due to enhanced lipolysis
LAIR-1 Limits Neutrophilic Airway Inflammation
Neutrophils are crucial to antimicrobial defense, but excessive neutrophilic inflammation induces immune pathology. The mechanisms by which neutrophils are regulated to prevent injury and preserve tissue homeostasis are not completely understood. We recently identified the collagen receptor leukocyte-associated immunoglobulin-like receptor (LAIR)-1 as a functional inhibitory receptor on airway-infiltrated neutrophils in viral bronchiolitis patients. In the current study, we sought to examine the role of LAIR-1 in regulating airway neutrophil responses in vivo. LAIR-1-deficient (Lair1−/−) and wild-type mice were infected with respiratory syncytial virus (RSV) or exposed to cigarette smoke as commonly accepted models of neutrophil-driven lung inflammation. Mice were monitored for cellular airway influx, weight loss, cytokine production, and viral loads. After RSV infection, Lair1−/− mice show enhanced airway inflammation accompanied by increased neutrophil and lymphocyte recruitment to the airways, without effects on viral loads or cytokine production. LAIR-1-Fc administration in wild type mice, which blocks ligand induced LAIR-1 activation, augmented airway inflammation recapitulating the observations in Lair1−/− mice. Likewise, in the smoke-exposure model, LAIR-1 deficiency enhanced neutrophil recruitment to the airways and worsened disease severity. Intranasal CXCL1–mediated neutrophil recruitment to the airways was enhanced in mice lacking LAIR-1, supporting an intrinsic function of LAIR-1 on neutrophils. In conclusion, the immune inhibitory receptor LAIR-1 suppresses neutrophil tissue migration and acts as a negative regulator of neutrophil-driven airway inflammation during lung diseases. Following our recent observations in humans, this study provides crucial in-vivo evidence that LAIR-1 is a promising target for pharmacological intervention in such pathologies
A proof of principle for using adaptive testing in routine Outcome Monitoring: the efficiency of the Mood and Anxiety Symptoms Questionnaire -Anhedonic Depression CAT
<p>Abstract</p> <p>Background</p> <p>In Routine Outcome Monitoring (ROM) there is a high demand for short assessments. Computerized Adaptive Testing (CAT) is a promising method for efficient assessment. In this article, the efficiency of a CAT version of the Mood and Anxiety Symptom Questionnaire, - Anhedonic Depression scale (MASQ-AD) for use in ROM was scrutinized in a simulation study.</p> <p>Methods</p> <p>The responses of a large sample of patients (<it>N </it>= 3,597) obtained through ROM were used. The psychometric evaluation showed that the items met the requirements for CAT. In the simulations, CATs with several measurement precision requirements were run on the item responses as if they had been collected adaptively.</p> <p>Results</p> <p>CATs employing only a small number of items gave results which, both in terms of depression measurement and criterion validity, were only marginally different from the results of a full MASQ-AD assessment.</p> <p>Conclusions</p> <p>It was concluded that CAT improved the efficiency of the MASQ-AD questionnaire very much. The strengths and limitations of the application of CAT in ROM are discussed.</p
Effects of a nutritional intervention on impaired behavior and cognitive function in an emphysematous murine model of COPD with endotoxin-induced lung inflammation
One cluster of the extrapulmonary manifestations in chronic obstructive pulmonary disease (COPD) is related to the brain, which includes anxiety, depression and cognitive impairment. Brain-related comorbidities are related to worsening of symptoms and increased mortality in COPD patients. In this study, a murine model of COPD was used to examine the effects of emphysema and repetitive pulmonary inflammatory events on systemic inflammatory outcomes and brain function. In addition, the effect of a dietary intervention on brain-related parameters was assessed. Adult male C57Bl/6J mice were exposed to elastase or vehicle intratracheally (i.t.) once a week on three consecutive weeks. Two weeks after the final administration, mice were i.t. exposed to lipopolysaccharide (LPS) or vehicle for three times with a 10 day interval. A dietary intervention enriched with omega-3 PUFAs, prebiotic fibers, tryptophan and vitamin D was administered from the first LPS exposure onward. Behavior and cognitive function, the degree of emphysema and both pulmonary and systemic inflammation as well as blood-brain barrier (BBB) integrity and neuroinflammation in the brain were assessed. A lower score in the cognitive test was observed in elastase-exposed mice. Mice exposed to elastase plus LPS showed less locomotion in the behavior test. The enriched diet seemed to reduce anxiety-like behavior over time and cognitive impairments associated with the presented COPD model, without affecting locomotion. In addition, the enriched diet restored the disbalance in splenic T-helper 1 (Th1) and Th2 cells. There was a trend toward recovering elastase plus LPS-induced decreased expression of occludin in brain microvessels, a measure of BBB integrity, as well as improving expression levels of kynurenine pathway markers in the brain by the enriched diet. The findings of this study demonstrate brain-associated comorbidities - including cognitive and behavioral impairments - in this murine model for COPD. Although no changes in lung parameters were observed, exposure to the specific enriched diet in this model appeared to improve systemic immune disbalance, BBB integrity and derailed kynurenine pathway which may lead to reduction of anxiety-like behavior and improved cognition
Adult Lysophosphatidic Acid Receptor 1-Deficient Rats with Hyperoxia-Induced Neonatal Chronic Lung Disease Are Protected against Lipopolysaccharide-Induced Acute Lung Injury.
Aim: Survivors of neonatal chronic lung disease or bronchopulmonary dysplasia (BPD) suffer from compromised lung function and are at high risk for developing lung injury by multiple insults later in life. Because neonatal lysophosphatidic acid receptor-1 (LPAR1)-deficient rats are protected against hyperoxia-induced lung injury, we hypothesize that LPAR1-deficiency may protect adult survivors of BPD from a second hit response against lipopolysaccharides (LPS)-induced lung injury. Methods: Directly after birth, Wistar control and LPAR1-deficient rat pups were exposed to hyperoxia (90%) for 8 days followed by recovery in room air. After 7 weeks, male rats received either LPS (2 mg kg-1) or 0.9% NaCl by intraperitoneal injection. Alveolar development and lung inflammation were investigated by morphometric analysis, IL-6 production, and mRNA expression of cytokines, chemokines, coagulation factors, and an indicator of oxidative stress. Results: LPAR1-deficient and control rats developed hyperoxia-induced neonatal emphysema, which persisted into adulthood, as demonstrated by alveolar enlargement and decreased vessel density. LPAR1-deficiency protected against LPS-induced lung injury. Adult controls with BPD exhibited an exacerbated response toward LPS with an increased expression of pro-inflammatory mRNAs, whereas LPAR1-deficient rats with BPD were less sensitive to this second hit with a decreased pulmonary influx of macrophages and neutrophils, interleukin-6 (IL-6) production, and mRNA expression of IL-6, monocyte chemoattractant protein-1, cytokine-induced neutrophil chemoattractant 1, plasminogen activator inhibitor-1, and tissue factor. Conclusion: LPAR1-deficient rats have increased hyperoxia-induced BPD survival rates and, despite the presence of neonatal emphysema, are less sensitive to an aggravated second hit than Wistar controls with BPD. Intervening in LPA-LPAR1-dependent signaling may not only have therapeutic potential for neonatal chronic lung disease, but may also protect adult survivors of BPD from sequelae later in life