8 research outputs found

    The protein kinase PKR is required for p38 MAPK activation and the innate immune response to bacterial endotoxin

    No full text
    Protein kinase RNA-regulated (PKR) is an established component of innate antiviral immunity. Recently, PKR has been shown to be essential for signal transduction in other situations of cellular stress. The relationship between PKR and the stress-activated protein kinases (SAPKs), such as p38 mitogen-activated protein kinase (MAPK), is not clear. Using embryonic fibroblasts from PKR wild-type and null mice, we established a requirement for PKR in the activation of SAPKs by double-stranded RNA, lipopolysaccharide (LPS) and proinflammatory cytokines. This does not reflect a global failure to activate SAPKs in the PKR-null background as these kinases are activated normally by anisomycin and other physicochemical stress. Activation of p38 MAPK was restored in immortalized PKR-null cells by reconstitution with human PKR. We also show that LPS induction of interleukin-6 and interleukin-12 mRNA is defective in PKR-null cells, and that production of these cytokines is impaired in PKR-null mice challenged with LPS. Our findings indicate, for the first time, that PKR is required for p38 MAPK signaling and plays a potentially important role in the innate response against bacterial endotoxin

    A Hypothalamic Phosphatase Switch Coordinates Energy Expenditure with Feeding

    No full text
    Beige adipocytes can interconvert between white and brown-like states and switch between energy storage versus expenditure. Here we report that beige adipocyte plasticity is important for feeding-associated changes in energy expenditure and is coordinated by the hypothalamus and the phosphatase TCPTP. A fasting-induced and glucocorticoid-mediated induction of TCPTP, inhibited insulin signaling in AgRP/NPY neurons, repressed the browning of white fat and decreased energy expenditure. Conversely feeding reduced hypothalamic TCPTP, to increase AgRP/NPY neuronal insulin signaling, white adipose tissue browning and energy expenditure. The feeding-induced repression of hypothalamic TCPTP was defective in obesity. Mice lacking TCPTP in AgRP/NPY neurons were resistant to diet-induced obesity and had increased beige fat activity and energy expenditure. The deletion of hypothalamic TCPTP in obesity restored feeding-induced browning and increased energy expenditure to promote weight loss. Our studies define a hypothalamic switch that coordinates energy expenditure with feeding for the maintenance of energy balance

    Alphavirus-Based DNA Vaccine Breaks Immunological Tolerance by Activating Innate Antiviral Pathways

    No full text
    Cancer vaccines targeting \u27self\u27 antigens that are expressed at consistently high levels by tumor cells are potentially useful in immunotherapy, but immunological tolerance may block their function. Here, we describe a novel, naked DNA vaccine encoding an alphavirus replicon (self-replicating mRNA) and the self/tumor antigen tyrosinase-related protein-1. Unlike conventional DNA vaccines, this vaccine can break tolerance and provide immunity to melanoma. The vaccine mediates production of double-stranded RNA, as evidenced by the autophosphorylation of dsRNA-dependent protein kinase R (PKR). Double-stranded RNA is critical to vaccine function because both the immunogenicity and the anti-tumor activity of the vaccine are blocked in mice deficient for the RNase L enzyme, a key component of the 2\u27,5\u27-linked oligoadenylate synthetase antiviral pathway involved in double-stranded RNA recognition. This study shows for the first time that alphaviral replicon-encoding DNA vaccines activate innate immune pathways known to drive antiviral immune responses, and points the way to strategies for improving the efficacy of immunization with naked DNA

    Alphavirus-Based DNA Vaccine Breaks Immunological Tolerance by Activating Innate Antiviral Pathways

    No full text
    Cancer vaccines targeting \u27self\u27 antigens that are expressed at consistently high levels by tumor cells are potentially useful in immunotherapy, but immunological tolerance may block their function. Here, we describe a novel, naked DNA vaccine encoding an alphavirus replicon (self-replicating mRNA) and the self/tumor antigen tyrosinase-related protein-1. Unlike conventional DNA vaccines, this vaccine can break tolerance and provide immunity to melanoma. The vaccine mediates production of double-stranded RNA, as evidenced by the autophosphorylation of dsRNA-dependent protein kinase R (PKR). Double-stranded RNA is critical to vaccine function because both the immunogenicity and the anti-tumor activity of the vaccine are blocked in mice deficient for the RNase L enzyme, a key component of the 2\u27,5\u27-linked oligoadenylate synthetase antiviral pathway involved in double-stranded RNA recognition. This study shows for the first time that alphaviral replicon-encoding DNA vaccines activate innate immune pathways known to drive antiviral immune responses, and points the way to strategies for improving the efficacy of immunization with naked DNA

    MYC drives platinum resistant SCLC that is overcome by the dual PI3K-HDAC inhibitor fimepinostat

    No full text
    Abstract Background Small cell lung cancer (SCLC) is an aggressive neuroendocrine cancer with an appalling overall survival of less than 5% (Zimmerman et al. J Thor Oncol 14:768-83, 2019). Patients typically respond to front line platinum-based doublet chemotherapy, but almost universally relapse with drug resistant disease. Elevated MYC expression is common in SCLC and has been associated with platinum resistance. This study evaluates the capacity of MYC to drive platinum resistance and through screening identifies a drug capable of reducing MYC expression and overcoming resistance. Methods Elevated MYC expression following the acquisition of platinum resistance in vitro and in vivo was assessed. Moreover, the capacity of enforced MYC expression to drive platinum resistance was defined in SCLC cell lines and in a genetically engineered mouse model that expresses MYC specifically in lung tumors. High throughput drug screening was used to identify drugs able to kill MYC-expressing, platinum resistant cell lines. The capacity of this drug to treat SCLC was defined in vivo in both transplant models using cell lines and patient derived xenografts and in combination with platinum and etoposide chemotherapy in an autochthonous mouse model of platinum resistant SCLC. Results MYC expression is elevated following the acquisition of platinum resistance and constitutively high MYC expression drives platinum resistance in vitro and in vivo. We show that fimepinostat decreases MYC expression and that it is an effective single agent treatment for SCLC in vitro and in vivo. Indeed, fimepinostat is as effective as platinum-etoposide treatment in vivo. Importantly, when combined with platinum and etoposide, fimepinostat achieves a significant increase in survival. Conclusions MYC is a potent driver of platinum resistance in SCLC that is effectively treated with fimepinostat
    corecore