98 research outputs found
Defaunation changes leaf trait composition of recruit communities in tropical forests in French Guiana
Hunting impacts tropical vertebrate populations, causing declines of species that function as seed dispersers and predators, or that browse seedlings and saplings. Whether and how the resulting reductions in seed dispersal, seed predation, and browsing translate to changes in the tree composition is poorly understood. Here, we assess the effect of defaunation on the functional composition of communities of tree recruits in tropical rainforests in French Guiana. We selected eight sites along a gradient of defaunation, caused by differences in hunting pressure, in otherwise intact old-growth forests in French Guiana. We measured shifts in functional composition by comparing leaf and fruit traits and wood density between tree recruits (up to 5 cm diameter at breast height) and adults, and tested whether and how these compositional shifts related to defaunation. We found a positive relationship with defaunation for shifts in specific leaf area, a negative relationship for shifts of leaf toughness and wood density, and a weak relationship for shifts in fruit traits. Our results suggest that the loss of vertebrates affects ecological processes such as seed dispersal and browsing, of which browsing remains understudied. Even though these changes sometimes seem minor, together they result in major shifts in forest composition. These changes have long-term ramifications that may alter forest dynamics for generations
Co-Expression of miRNA Targeting the Expression of PERK, but Not PKR, Enhances Cellular Immunity from an HIV-1 Env DNA Vaccine
Small non-coding micro-RNAs (miRNA) are important post-transcriptional regulators of mammalian gene expression that can be used to direct the knockdown of expression from targeted genes. We examined whether DNA vaccine vectors co-expressing miRNA with HIV-1 envelope (Env) antigens could influence the magnitude or quality of the immune responses to Env in mice. Human miR-155 and flanking regions from the non-protein encoding gene mirhg155 were introduced into an artificial intron within an expression vector for HIV-1 Env gp140. Using the miR-155-expressing intron as a scaffold, we developed novel vectors for miRNA-mediated targeting of the cellular antiviral proteins PKR and PERK, which significantly down-modulated target gene expression and led to increased Env expression in vitro. Finally, vaccinating BALB/c mice with a DNA vaccine vector delivering miRNA targeting PERK, but not PKR, was able to augment the generation of Env-specific T-cell immunity. This study provides proof-of-concept evidence that miRNA effectors incorporated into vaccine constructs can positively influence vaccine immunogenicity. Further testing of vaccine-encoded miRNA will determine if such strategies can enhance protective efficacy from vaccines against HIV-1 for eventual human use
Possible modification of BRSK1 on the risk of alkylating chemotherapy-related reduced ovarian function
STUDY QUESTION: Do genetic variations in the DNA damage response pathway modify the adverse effect of alkylating agents on ovarian function in female childhood cancer survivors (CCS)? SUMMARY ANSWER: Female CCS carrying a common BR serine/threonine kinase 1 (BRSK1) gene variant appear to be at 2.5-fold increased odds of reduced ovarian function after treatment with high doses of alkylating chemotherapy. WHAT IS KNOWN ALREADY: Female CCS show large inter-individual variability in the impact of DNA-damaging alkylating chemotherapy, given as treatment of childhood cancer, on adult ovarian function. Genetic variants in DNA repair genes affecting ovarian function might explain this variability. STUDY DESIGN, SIZE, DURATION: CCS for the discovery cohort were identified from the Dutch Childhood Oncology Group (DCOG) LATER VEVO-study, a multi-centre retrospective cohort study evaluating fertility, ovarian reserve and risk of premature menopause among adult female 5-year survivors of childhood cancer. Female 5-year CCS, diagnosed with cancer and treated with chemotherapy before the age of 25 years, and aged 18 years or older at time of study were enrolled in the current study. Results from the discovery Dutch DCOG-LATER VEVO cohort (n = 285) were validated in the pan-European PanCareLIFE (n =465) and the USA-based St. Jude Lifetime Cohort (n = 391). PARTICIPANTS/MATERIALS, SETTING, METHODS: To evaluate ovarian function, anti-Miillerian hormone (AMH) levels were assessed in both the discovery cohort and the replication cohorts. Using additive genetic models in linear and logistic regression, five genetic variants involved in DNA damage response were analysed in relation to cyclophosphamide equivalent dose (CED) score and their impact on ovarian function. Results were then examined using fixed-effect meta-analysis. MAIN RESULTS AND THE ROLE OF CHANCE: Meta-analysis across the three independent cohorts showed a significant interaction effect (P= 3.0 x 10(-4)) between rs11668344 of BRSK 1 (allele frequency = 0.34) among CCS treated with high-dose alkylating agents (CED score >= 8000 mg/m(2)), resulting in a 2.5-fold increased odds of a reduced ovarian function (lowest AMH tertile) for CCS carrying one G allele compared to CCS without this allele (odds ratio genotype AA: 2.01 vs AG: 5.00). LIMITATIONS, REASONS FOR CAUTION: While low AMH levels can also identify poor responders in assisted reproductive technology, it needs to be emphasized that AMH remains a surrogate marker of ovarian function. WIDER IMPLICATIONS OF THE FINDINGS: Further research, validating our findings and identifying additional risk contributing genetic variants, may enable individualized counselling regarding treatment-related risks and necessity of fertility preservation procedures in girls with cancer
The Surface Array of IceCube-Gen2
The science goals of IceCube-Gen2 include multi-messenger astronomy, astroparticle and particle physics. To this end, the observatory will include several detection methods, including a surface array and in-ice optical sensors. The array will have an approximately 8 km2 surface coverage, consisting of elevated scintillator panels and radio antennas to detect air showers in the energy range of several 100 TeV to a few EeV. The observatoryâs design is unique in that the measurements using the surface array can be combined with the observations of â„ 300 GeV muons, produced in the hadronic cascades, using the optical detectors in the ice. This allows for an enhanced ability to study cosmic-ray and hadronic physics as well as to boost the sensitivity for astrophysical neutrinos from the southern sky by reducing the primary background, atmospheric muons. We will present
the baseline design of the surface array and highlight the expected scientific capabilitie
Mechanical design of the optical modules intended for IceCube-Gen2
IceCube-Gen2 is an expansion of the IceCube neutrino observatory at the South Pole that aims to increase the sensitivity to high-energy neutrinos by an order of magnitude. To this end, about 10,000 new optical modules will be installed, instrumenting a fiducial volume of about 8 km3. Two newly developed optical module types increase IceCubeâs current sensitivity per module by a factor of three by integrating 16 and 18 newly developed four-inch PMTs in specially designed 12.5-inch diameter pressure vessels. Both designs use conical silicone gel pads to optically couple the PMTs to the pressure vessel to increase photon collection efficiency. The outside portion of gel pads are pre-cast onto each PMT prior to integration, while the interiors are filled and cast after the PMT assemblies are installed in the pressure vessel via a pushing mechanism. This paper presents both the mechanical design, as well as the performance of prototype modules at high pressure (70 MPa) and low temperature (â40âC), characteristic of the environment inside the South Pole ice
Galactic Core-Collapse Supernovae at IceCube: âFire Drillâ Data Challenges and follow-up
The next Galactic core-collapse supernova (CCSN) presents a once-in-a-lifetime opportunity to make astrophysical measurements using neutrinos, gravitational waves, and electromagnetic radiation. CCSNe local to the Milky Way are extremely rare, so it is paramount that detectors are prepared to observe the signal when it arrives. The IceCube Neutrino Observatory, a gigaton water Cherenkov detector below the South Pole, is sensitive to the burst of neutrinos released by a Galactic CCSN at a level >10Ï. This burst of neutrinos precedes optical emission by hours to days, enabling neutrinos to serve as an early warning for follow-up observation. IceCube\u27s detection capabilities make it a cornerstone of the global network of neutrino detectors monitoring for Galactic CCSNe, the SuperNova Early Warning System (SNEWS 2.0). In this contribution, we describe IceCube\u27s sensitivity to Galactic CCSNe and strategies for operational readiness, including "fire drill" data challenges. We also discuss coordination with SNEWS 2.0
All-Energy Search for Solar Atmospheric Neutrinos with IceCube
The interaction of cosmic rays with the solar atmosphere generates a secondary flux of mesons that decay into photons and neutrinos â the so-called solar atmospheric flux. Although the gamma-ray component of this flux has been observed in Fermi-LAT and HAWC Observatory data, the neutrino component remains undetected. The energy distribution of those neutrinos follows a soft spectrum that extends from the GeV to the multi-TeV range, making large Cherenkov neutrino telescopes a suitable for probing this flux. In this contribution, we will discuss current progress of a search for the solar neutrino flux by the IceCube Neutrino Observatory using all available data since 2011. Compared to the previous analysis which considered only high-energy muon neutrino tracks, we will additionally consider events produced by all flavors of neutrinos down to GeV-scale energies. These new events should improve our analysis sensitivity since the flux falls quickly with energy. Determining the magnitude of the neutrino flux is essential, since it is an irreducible background to indirect solar dark matter searches
Multiplicity of TeV muons in extensive air showers detected with IceTop and IceCube
We report on an analysis of the high-energy muon component in near-vertical extensive air showers detected by the surface array IceTop in coincidence with the in-ice array of the IceCube Neutrino Observatory. In the coincidence measurement, the predominantly electromagnetic signal measured by IceTop is used to estimate the cosmic-ray primary energy, and the energy loss of the muon bundle in the deep in-ice array is used to estimate the number of muons in the shower with energies above 500 GeV (âTeV muonsâ). The average multiplicity of these TeV muons is determined for cosmic-ray energies between 2.5 PeV and 100 PeV assuming three different hadronic interaction models: Sibyll 2.1, QGSJet-II.04, and EPOS-LHC. For all models considered, the results are found to be in good agreement with the expectations from simulations. A tension exists, however, between the high-energy muon multiplicity and other observables; most importantly the density of GeV muons measured by IceTop using QGSJet-II.04 and EPOS-LHC
- âŠ