14 research outputs found
Roll-to-Roll Fabrication of Bijels via Solvent Transfer Induced Phase Separation (R2R-STrIPS)
Bicontinuous interfacially jammed emulsion gels (bijels) are soft materials with applications in separation science, energy storage, catalysis, and tissue engineering. Bijels are formed by arresting the liquid–liquid phase separation of two immiscible liquids via interfacial jamming of colloidal particles. Current fabrication methods of bijels employ either batch processing or continuous-flow microfluidic synthesis. Production methods with higher throughput are needed to facilitate large-scale synthesis of bijels. Herein, it is shown that roll-to-roll processing (R2R) enables the fabrication of bijel films with controlled dimensions at rates of several cm3 per minute. Increasing the bijel production rate via R2R requires an understanding of the interaction of the bijel with the R2R substrate. The study demonstrates that controlling the wetting on the R2R substrate enables the synthesis of uniform bijel films with adjustable thickness. Moreover, this research shows that the bijel film microstructure depends on the mechanism of phase separation and particle surface functionalization. The resulting knowledge gains can help to leverage bijel synthesis from laboratory to industrial scales in the future, promoting the exciting application potentials of bijels
Fabrication of bijels with sub-micron domains via a single-channel flow device
Particle-stabilized bicontinuous emulsions (bijels) are made of two interwoven liquid channel systems. In contrast to emulsion droplets, the liquid-liquid interface of bijels curves both towards the oil and the water phases. Thus, particles with equal wettability for both oil and water are needed to stabilize the interface. In this research paper, we enhance the understanding of nanoparticle functionalization by a surfactant for controlling the particle wettability. To this end, we develop a novel, single-channel, continuous flow method, enabling the rapid synthesis and analysis of bijels formed via solvent transfer induced phase separation (STrIPS). Silica nanoparticles are functionalized with the positively charged surfactant (cetyltrimethylammonium+, CTA+). Zeta-potential and colloidal stability analysis are employed to characterize the CTA+ functionalization. Confocal and electron microscopy are used to visualize the resulting bijel structures. Bijels with nearly uniform, sub-micrometer channels are obtained when the particle functionalization by CTA+ is regulated. To this end, the initial negative zeta-potential of the particles needs to be low enough to prevent excessive CTA+ adsorption. The adsorption is further controlled by adjusting the concentrations of CTA+, salt and glycerol additive. This report shows that the nanoparticle surfactant modification depends on multiple parameters, providing guidance for future bijel synthesis approaches
Luminescent colloidal InSb quantum dots from in situ generated single-source precursor
Despite recent advances, the synthesis of colloidal InSb quantum dots (QDs) remains underdeveloped, mostly due to the lack of suitable precursors. In this work, we use Lewis acid-base interactions between Sb(III) and In(III) species formed at room temperature in situ from commercially available compounds (viz., InCl3, Sb[NMe2]3 and a primary alkylamine) to obtain InSb adduct complexes. These complexes are successfully used as precursors for the synthesis of colloidal InSb QDs ranging from 2.8 to 18.2 nm in diameter by fast coreduction at sufficiently high temperatures (≥230 °C). Our findings allow us to propose a formation mechanism for the QDs synthesized in our work, which is based on a nonclassical nucleation event, followed by aggregative growth. This yields ensembles with multimodal size distributions, which can be fractionated in subensembles with relatively narrow polydispersity by postsynthetic size fractionation. InSb QDs with diameters below 7.0 nm have the zinc blende crystal structure, while ensembles of larger QDs (≥10 nm) consist of a mixture of wurtzite and zinc blende QDs. The QDs exhibit photoluminescence with small Stokes shifts and short radiative lifetimes, implying that the emission is due to band-edge recombination and that the direct nature of the bandgap of bulk InSb is preserved in InSb QDs. Finally, we constructed a sizing curve correlating the peak position of the lowest energy absorption transition with the QD diameters, which shows that the band gap of colloidal InSb QDs increases with size reduction following a 1/d dependence
Luminescent Colloidal InSb Quantum Dots from In Situ Generated Single-Source Precursor
Despite recent advances, the synthesis of colloidal InSb quantum dots (QDs) remains underdeveloped, mostly due to the lack of suitable precursors. In this work, we use Lewis acid-base interactions between Sb(III) and In(III) species formed at room temperature in situ from commercially available compounds (viz., InCl3, Sb[NMe2]3 and a primary alkylamine) to obtain InSb adduct complexes. These complexes are successfully used as precursors for the synthesis of colloidal InSb QDs ranging from 2.8 to 18.2 nm in diameter by fast coreduction at sufficiently high temperatures (≥230 °C). Our findings allow us to propose a formation mechanism for the QDs synthesized in our work, which is based on a nonclassical nucleation event, followed by aggregative growth. This yields ensembles with multimodal size distributions, which can be fractionated in subensembles with relatively narrow polydispersity by postsynthetic size fractionation. InSb QDs with diameters below 7.0 nm have the zinc blende crystal structure, while ensembles of larger QDs (≥10 nm) consist of a mixture of wurtzite and zinc blende QDs. The QDs exhibit photoluminescence with small Stokes shifts and short radiative lifetimes, implying that the emission is due to band-edge recombination and that the direct nature of the bandgap of bulk InSb is preserved in InSb QDs. Finally, we constructed a sizing curve correlating the peak position of the lowest energy absorption transition with the QD diameters, which shows that the band gap of colloidal InSb QDs increases with size reduction following a 1/d dependence
Inhibition of GTPase Rac1 in endothelium by 6-mercaptopurine results in immunosuppression in nonimmune cells: new target for an old drug
Azathioprine and its metabolite 6-mercaptopurine (6-MP) are well established immunosuppressive drugs. Common understanding of their immunosuppressive properties is largely limited to immune cells. However, in this study, the mechanism underlying the protective role of 6-MP in endothelial cell activation is investigated. Because 6-MP and its derivative 6-thioguanosine-5'-triphosphate (6-T-GTP) were shown to block activation of GTPase Rac1 in T lymphocytes, we focused on Rac1-mediated processes in endothelial cells. Indeed, 6-MP and 6-T-GTP decreased Rac1 activation in endothelial cells. As a result, the compounds inhibited TNF-α-induced downstream signaling via JNK and reduced activation of transcription factors c-Jun, activating transcription factor-2 and, in addition, NF κ-light-chain-enhancer of activated B cells (NF-κB), which led to decreased transcription of proinflammatory cytokines. Moreover, 6-MP and 6-T-GTP selectively decreased TNF-α-induced VCAM-1 but not ICAM-1 protein levels. Rac1-mediated generation of cell membrane protrusions, which form docking structures to capture leukocytes, also was reduced by 6-MP/6-T-GTP. Consequently, leukocyte transmigration was inhibited after 6-MP/6-T-GTP treatment. These data underscore the anti-inflammatory effect of 6-MP and 6-T-GTP on endothelial cells by blocking Rac1 activation. Our data provide mechanistic insight that supports development of novel Rac1-specific therapeutic approaches against chronic inflammatory disease
Luminescent colloidal InSb quantum dots from in situ generated single-source precursor
Despite recent advances, the synthesis of colloidal InSb quantum dots (QDs) remains underdeveloped, mostly due to the lack of suitable precursors. In this work, we use Lewis acid-base interactions between Sb(III) and In(III) species formed at room temperature in situ from commercially available compounds (viz., InCl3, Sb[NMe2]3 and a primary alkylamine) to obtain InSb adduct complexes. These complexes are successfully used as precursors for the synthesis of colloidal InSb QDs ranging from 2.8 to 18.2 nm in diameter by fast coreduction at sufficiently high temperatures (≥230 °C). Our findings allow us to propose a formation mechanism for the QDs synthesized in our work, which is based on a nonclassical nucleation event, followed by aggregative growth. This yields ensembles with multimodal size distributions, which can be fractionated in subensembles with relatively narrow polydispersity by postsynthetic size fractionation. InSb QDs with diameters below 7.0 nm have the zinc blende crystal structure, while ensembles of larger QDs (≥10 nm) consist of a mixture of wurtzite and zinc blende QDs. The QDs exhibit photoluminescence with small Stokes shifts and short radiative lifetimes, implying that the emission is due to band-edge recombination and that the direct nature of the bandgap of bulk InSb is preserved in InSb QDs. Finally, we constructed a sizing curve correlating the peak position of the lowest energy absorption transition with the QD diameters, which shows that the band gap of colloidal InSb QDs increases with size reduction following a 1/d dependence
External validation of prognostic models to predict risk of gestational diabetes mellitus in one Dutch cohort : prospective multicentre cohort study
OBJECTIVE: To perform an external validation and direct comparison of published prognostic models for early prediction of the risk of gestational diabetes mellitus, including predictors applicable in the first trimester of pregnancy. DESIGN: External validation of all published prognostic models in large scale, prospective, multicentre cohort study. SETTING: 31 independent midwifery practices and six hospitals in the Netherlands. PARTICIPANTS: Women recruited in their first trimester (<14 weeks) of pregnancy between December 2012 and January 2014, at their initial prenatal visit. Women with pre-existing diabetes mellitus of any type were excluded. MAIN OUTCOME MEASURES: Discrimination of the prognostic models was assessed by the C statistic, and calibration assessed by calibration plots. RESULTS: 3723 women were included for analysis, of whom 181 (4.9%) developed gestational diabetes mellitus in pregnancy. 12 prognostic models for the disorder could be validated in the cohort. C statistics ranged from 0.67 to 0.78. Calibration plots showed that eight of the 12 models were well calibrated. The four models with the highest C statistics included almost all of the following predictors: maternal age, maternal body mass index, history of gestational diabetes mellitus, ethnicity, and family history of diabetes. Prognostic models had a similar performance in a subgroup of nulliparous women only. Decision curve analysis showed that the use of these four models always had a positive net benefit. CONCLUSIONS: In this external validation study, most of the published prognostic models for gestational diabetes mellitus show acceptable discrimination and calibration. The four models with the highest discriminative abilities in this study cohort, which also perform well in a subgroup of nulliparous women, are easy models to apply in clinical practice and therefore deserve further evaluation regarding their clinical impact
External validation of prognostic models for preeclampsia in a Dutch multicenter prospective cohort.
To perform an external validation of all published prognostic models for first-trimester prediction of the risk of developing preeclampsia (PE). Women <14 weeks of pregnancy were recruited in the Netherlands. All systematically identified prognostic models for PE that contained predictors commonly available were eligible for external validation. 3,736 women were included; 87 (2.3%) developed PE. Calibration was poor due to overestimation. Discrimination of 9 models for LO-PE ranged from 0.58 to 0.71 and of 9 models for all PE from 0.55 to 0.75. Only a few easily applicable prognostic models for all PE showed discrimination above 0.70, which is considered an acceptable performance