14,657 research outputs found
Ionizing radiation fluctuations and large-scale structure in the Lyman-alpha forest
We investigate the large-scale inhomogeneities of the hydrogen ionizing
radiation field in the Universe at redshift z=3. Using a raytracing algorithm,
we simulate a model in which quasars are the dominant sources of radiation. We
make use of large scale N-body simulations of a LambdaCDM universe, and include
such effects as finite quasar lifetimes and output on the lightcone, which
affects the shape of quasar light echoes. We create Lya forest spectra that
would be generated in the presence of such a fluctuating radiation field,
finding that the power spectrum of the Lya forest can be suppressed by as much
as 15 % for modes with k=0.05-1 Mpc/h. This relatively small effect may have
consequences for high precision measurements of the Lya power spectrum on
larger scales than have yet been published. We also investigate another
radiation field probe, the cross-correlation of quasar positions and the Lya
forest. For both quasar lifetimes which we simulate (10^7 yr and 10^8 yr), we
expect to see a strong decrease in the Lya absorption close to other quasars
(the ``foreground'' proximity effect). We then use data from the Sloan Digital
Sky Survey First Data Release to make an observational determination of this
statistic. We find no sign of our predicted lack of absorption, but instead
increased absorption close to quasars. If the bursts of radiation from quasars
last on average < 10^6 yr, then we would not expect to be able to see the
foreground effect. However, the strength of the absorption itself seems to be
indicative of rare objects, and hence much longer total times of emission per
quasar. Variability of quasars in bursts with timescales > 10^4yr and < 10^6 yr
could reconcile these two facts.Comment: Submitted to ApJ, 21 pages, 17 postscript figures, emulateapj.st
Recommended from our members
Advances and challenges in commercializing radiative cooling
Radiative cooling (RC) dissipates terrestrial heat to outer space through the atmospheric window, without external energy input and production of environmental pollutants. More and more efforts have been devoted to this clean promising cooling technology; thus diverse radiative coolers have emerged. However, the performance, cost, and effectiveness of various radiative coolers are not exactly the same. In addition, the large-scale application of RC technology is impeded by the low energy density, uncontrollable cooling power, and limited sky-facing area. Here, we critically review the recent progress of RC technology, evaluate the cooling performance of various radiative coolers, and discuss the challenges and feasible solutions to commercialize RC technology. Furthermore, valuable insights are provided to make new breakthroughs in this field
On the importance of local sources of radiation for quasar absorption line systems
A generic assumption of ionization models of quasar absorption systems is
that radiation from local sources is negligible compared with the cosmological
background. We test this assumption and find that it is unlikely to hold for
absorbers as rare as H I Lyman limit systems. Assuming that the absorption
systems are gas clouds centered on sources of radiation, we derive analytic
estimates for the cross-section weighted moments of the flux seen by the
absorbers, of the impact parameter, and of the luminosity of the central
source. In addition, we compute the corresponding medians numerically. For the
one class of absorbers for which the flux has been measured: damped Ly-alpha
systems at z~3, our prediction is in excellent agreement with the observations
if we assume that the absorption arises in clouds centered on Lyman-break
galaxies. Finally, we show that if Lyman-break galaxies dominate the UV
background at redshift 3, then consistency between observations of the UV
background, the UV luminosity density from galaxies, and the number density of
Lyman limit systems requires escape fractions of order 10 percent.Comment: Accepted for publication in the Astrophysical Journal, 11 pages, 1
figure. Version 2: Added alternative method. Decreased fiducial escape
fraction to guarantee consistency between observed luminosity density, mean
free path, and UV background. This increased the column density above which
local radiation is importan
Rejection-Cascade of Gaussians: Real-time adaptive background subtraction framework
Background-Foreground classification is a well-studied problem in computer
vision. Due to the pixel-wise nature of modeling and processing in the
algorithm, it is usually difficult to satisfy real-time constraints. There is a
trade-off between the speed (because of model complexity) and accuracy.
Inspired by the rejection cascade of Viola-Jones classifier, we decompose the
Gaussian Mixture Model (GMM) into an adaptive cascade of Gaussians(CoG). We
achieve a good improvement in speed without compromising the accuracy with
respect to the baseline GMM model. We demonstrate a speed-up factor of 4-5x and
17 percent average improvement in accuracy over Wallflowers surveillance
datasets. The CoG is then demonstrated to over the latent space representation
of images of a convolutional variational autoencoder(VAE). We provide initial
results over CDW-2014 dataset, which could speed up background subtraction for
deep architectures.Comment: Accepted for National Conference on Computer Vision, Pattern
Recognition, Image Processing and Graphics (NCVPRIPG 2019
Microscopic three-body force for asymmetric nuclear matter
Brueckner calculations including a microscopic three-body force have been
extended to isospin asymmetric nuclear matter. The effects of the three-body
force on the equation of state and on the single-particle properties of nuclear
matter are discussed with a view to possible applications in nuclear physics
and astrophysics. It is shown that, even in the presence of the three-body
force, the empirical parabolic law of the energy per nucleon vs isospin
asymmetry is fulfilled in the whole asymmetry range
up to high densities. The three-body force provides a strong
enhancement of symmetry energy increasing with the density in good agreement
with relativistic approaches. The Lane's assumption that proton and neutron
mean fields linearly vary vs the isospin parameter is violated at high density
in the presence of the three-body force. Instead the momentum dependence of the
mean fields is rather insensitive to three body force which brings about a
linear isospin deviation of the neutron and proton effective masses. The
isospin effects on multifragmentation events and collective flows in heavy-ion
collisions are briefly discussed along with the conditions for direct URCA
processes to occur in the neutron-star cooling.Comment: 11 pages, 7 figure
Lamellar phase separation and dynamic competition in La0.23Ca0.77MnO3
We report the coexistence of lamellar charge-ordered (CO) and
charge-disordered (CD) domains, and their dynamical behavior, in
La0.23Ca0.77MnO3. Using high resolution transmission electron microscopy (TEM),
we show that below Tcd~170K a CD-monoclinic phase forms within the established
CO-orthorhombic matrix. The CD phase has a sheet-like morphology, perpendicular
to the q vector of the CO superlattice (a axis of the Pnma structure). For
temperatures between 64K and 130K, both the TEM and resistivity experiments
show a dynamic competition between the two phases: at constant T, the CD phase
slowly advances over the CO one. This slow dynamics appears to be linked to the
magnetic transitions occurring in this compound, suggesting important
magnetoelastic effects.Comment: 4 pages, 4 figure
- …