112 research outputs found

    Somatosensory and auditory deviance detection for outcome prediction during postanoxic coma.

    Get PDF
    Prominent research in patients with disorders of consciousness investigated the electrophysiological correlates of auditory deviance detection as a marker of consciousness recovery. Here, we extend previous studies by investigating whether somatosensory deviance detection provides an added value for outcome prediction in postanoxic comatose patients. Electroencephalography responses to frequent and rare stimuli were obtained from 66 patients on the first and second day after coma onset. Multivariate decoding analysis revealed an above chance-level auditory discrimination in 25 patients on the first day and in 31 patients on the second day. Tactile discrimination was significant in 16 patients on the first day and in 23 patients on the second day. Single-day sensory discrimination was unrelated to patients' outcome in both modalities. However, improvement of auditory discrimination from first to the second day was predictive of good outcome with a positive predictive power (PPV) of 0.73 (CI = 0.52-0.88). Analyses considering the improvement of tactile, auditory and tactile, or either auditory or tactile discrimination showed no significant prediction of good outcome (PPVs = 0.58-0.68). Our results show that in the acute phase of coma deviance detection is largely preserved for both auditory and tactile modalities. However, we found no evidence for an added value of somatosensory to auditory deviance detection function for coma-outcome prediction

    Climate Scenarios for Switzerland CH2018 – Approach and Implications

    Get PDF
    To make sound decisions in the face of climate change, government agencies, policymakers and private stakeholders require suitable climate information on local to regional scales. In Switzerland, the development of climate change scenarios is strongly linked to the climate adaptation strategy of the Confederation. The current climate scenarios for Switzerland CH2018 - released in form of six user-oriented products - were the result of an intensive collaboration between academia and administration under the umbrella of the National Centre for Climate Services (NCCS), accounting for user needs and stakeholder dialogues from the beginning. A rigorous scientific concept ensured consistency throughout the various analysis steps of the EURO-CORDEX projections and a common procedure on how to extract robust results and deal with associated uncertainties. The main results show that Switzerland’s climate will face dry summers, heavy precipitation, more hot days and snow-scarce winters. Approximately half of these changes could be alleviated by mid-century through strong global mitigation efforts. A comprehensive communication concept ensured that the results were rolled out and distilled in specific user-oriented communication measures to increase their uptake and to make them actionable. A narrative approach with four fictitious persons was used to communicate the key messages to the general public. Three years after the release, the climate scenarios have proven to be an indispensable information basis for users in climate adaptation and for downstream applications. Potential for extensions and updates has been identified since then and will shape the concept and planning of the next scenario generation in Switzerland

    EEG for good outcome prediction after cardiac arrest: a multicentre cohort study.

    Get PDF
    AIM Assess the prognostic ability of a non-highly malignant and reactive EEG to predict good outcome after cardiac arrest (CA). METHODS Prospective observational multicentre substudy of the "Targeted Hypothermia versus Targeted Normothermia after Out-of-hospital Cardiac Arrest Trial", also known as the TTM2-trial. Presence or absence of highly malignant EEG patterns and EEG reactivity to external stimuli were prospectively assessed and reported by the trial sites. Highly malignant patterns were defined as burst-suppression or suppression with or without superimposed periodic discharges. Multimodal prognostication was performed 96 hours after CA. Good outcome at 6 months was defined as a modified Rankin Scale score of 0-3. RESULTS 873 comatose patients at 59 sites had an EEG assessment during the hospital stay. Of these, 283 (32%) had good outcome. EEG was recorded at a median of 69 hours (IQR 47-91) after CA. Absence of highly malignant EEG patterns was seen in 543 patients of whom 255 (29% of the cohort) had preserved EEG reactivity. A non-highly malignant and reactive EEG had 56% (CI 50-61) sensitivity and 83% (CI 80-86) specificity to predict good outcome. Presence of EEG reactivity contributed (p<0.001) to the specificity of EEG to predict good outcome compared to only assessing background pattern without taking reactivity into account. CONCLUSION Nearly one-third of comatose patients resuscitated after CA had a non-highly malignant and reactive EEG that was associated with a good long-term outcome. Reactivity testing should be routinely performed since preserved EEG reactivity contributed to prognostic performance

    NeuroML: A Language for Describing Data Driven Models of Neurons and Networks with a High Degree of Biological Detail

    Get PDF
    Biologically detailed single neuron and network models are important for understanding how ion channels, synapses and anatomical connectivity underlie the complex electrical behavior of the brain. While neuronal simulators such as NEURON, GENESIS, MOOSE, NEST, and PSICS facilitate the development of these data-driven neuronal models, the specialized languages they employ are generally not interoperable, limiting model accessibility and preventing reuse of model components and cross-simulator validation. To overcome these problems we have used an Open Source software approach to develop NeuroML, a neuronal model description language based on XML (Extensible Markup Language). This enables these detailed models and their components to be defined in a standalone form, allowing them to be used across multiple simulators and archived in a standardized format. Here we describe the structure of NeuroML and demonstrate its scope by converting into NeuroML models of a number of different voltage- and ligand-gated conductances, models of electrical coupling, synaptic transmission and short-term plasticity, together with morphologically detailed models of individual neurons. We have also used these NeuroML-based components to develop an highly detailed cortical network model. NeuroML-based model descriptions were validated by demonstrating similar model behavior across five independently developed simulators. Although our results confirm that simulations run on different simulators converge, they reveal limits to model interoperability, by showing that for some models convergence only occurs at high levels of spatial and temporal discretisation, when the computational overhead is high. Our development of NeuroML as a common description language for biophysically detailed neuronal and network models enables interoperability across multiple simulation environments, thereby improving model transparency, accessibility and reuse in computational neuroscience

    Microphysical processing of aerosol particles in orographic clouds

    No full text
    An explicit and detailed treatment of cloud-borne particles allowing for the consideration of aerosol cycling in clouds has been implemented into COSMO-Model, the regional weather forecast and climate model of the Consortium for Small-scale Modeling (COSMO). The effects of aerosol scavenging, cloud microphysical processing and regeneration upon cloud evaporation on the aerosol population and on subsequent cloud formation are investigated. For this, two-dimensional idealized simulations of moist flow over two bell-shaped mountains were carried out varying the treatment of aerosol scavenging and regeneration processes for a warm-phase and a mixed-phase orographic cloud. <br><br> The results allowed us to identify different aerosol cycling mechanisms. In the simulated non-precipitating warm-phase cloud, aerosol mass is incorporated into cloud droplets by activation scavenging and released back to the atmosphere upon cloud droplet evaporation. In the mixed-phase cloud, a first cycle comprises cloud droplet activation and evaporation via the Wegener–Bergeron–Findeisen (WBF) process. A second cycle includes below-cloud scavenging by precipitating snow particles and snow sublimation and is connected to the first cycle via the riming process which transfers aerosol mass from cloud droplets to snowflakes. In the simulated mixed-phase cloud, only a negligible part of the total aerosol mass is incorporated into ice crystals. Sedimenting snowflakes reaching the surface remove aerosol mass from the atmosphere. The results show that aerosol processing and regeneration lead to a vertical redistribution of aerosol mass and number. Thereby, the processes impact the total aerosol number and mass and additionally alter the shape of the aerosol size distributions by enhancing the internally mixed/soluble Aitken and accumulation mode and generating coarse-mode particles. Concerning subsequent cloud formation at the second mountain, accounting for aerosol processing and regeneration increases the cloud droplet number concentration with possible implications for the ice crystal number concentration

    Composition of Bionutritional Index for Beef Cattle

    No full text
    ABSTRACT: Records of 13,686 male cattle in year of 2009, from a feedlot located in the northern of MatoGrosso state, were used to discriminate possible differences between dry and rainy seasons of the year and weight class in lots . Was performed multivariate analysis of variance (MANOVA) for discrimination of differences between treatments considering jointly weight gain total and total CMS. Thus, based on the result of the MANOVA, we proceeded to calculate the first canonical variable or the equivalent linear discriminant function Fischer, identified as EBN values.. Subsequently, the indices were established feed conversion (FC) and feed efficiency (EE) and performed an analysis of variance for each of the new index as a function of treatment. The VC1 variable has mean and median have similar values and has better symmetry with respect to the dispersion of values around the mean, the fact that due to the larger number of classes in which the observations so willing. The worst situation occurred for feed conversion, feed efficiency presenting with intermediate behavior.Keywords: animal production; multivariate performance</p
    • 

    corecore